zip.cpp 110 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
#include "stdafx.h"
#include <windows.h>
#include <stdio.h>
#include <tchar.h>
#include "zip.h"


// THIS FILE is almost entirely based upon code by info-zip.
// It has been modified by Lucian Wischik. The modifications
// were a complete rewrite of the bit of code that generates the
// layout of the zipfile, and support for zipping to/from memory
// or handles or pipes or pagefile or diskfiles, encryption, unicode.
// The original code may be found at http://www.info-zip.org
// The original copyright text follows.
//
//
//
// This is version 1999-Oct-05 of the Info-ZIP copyright and license.
// The definitive version of this document should be available at
// ftp://ftp.cdrom.com/pub/infozip/license.html indefinitely.
//
// Copyright (c) 1990-1999 Info-ZIP.  All rights reserved.
//
// For the purposes of this copyright and license, "Info-ZIP" is defined as
// the following set of individuals:
//
//   Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois,
//   Jean-loup Gailly, Hunter Goatley, Ian Gorman, Chris Herborth, Dirk Haase,
//   Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz, David Kirschbaum,
//   Johnny Lee, Onno van der Linden, Igor Mandrichenko, Steve P. Miller,
//   Sergio Monesi, Keith Owens, George Petrov, Greg Roelofs, Kai Uwe Rommel,
//   Steve Salisbury, Dave Smith, Christian Spieler, Antoine Verheijen,
//   Paul von Behren, Rich Wales, Mike White
//
// This software is provided "as is," without warranty of any kind, express
// or implied.  In no event shall Info-ZIP or its contributors be held liable
// for any direct, indirect, incidental, special or consequential damages
// arising out of the use of or inability to use this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
//    1. Redistributions of source code must retain the above copyright notice,
//       definition, disclaimer, and this list of conditions.
//
//    2. Redistributions in binary form must reproduce the above copyright
//       notice, definition, disclaimer, and this list of conditions in
//       documentation and/or other materials provided with the distribution.
//
//    3. Altered versions--including, but not limited to, ports to new operating
//       systems, existing ports with new graphical interfaces, and dynamic,
//       shared, or static library versions--must be plainly marked as such
//       and must not be misrepresented as being the original source.  Such
//       altered versions also must not be misrepresented as being Info-ZIP
//       releases--including, but not limited to, labeling of the altered
//       versions with the names "Info-ZIP" (or any variation thereof, including,
//       but not limited to, different capitalizations), "Pocket UnZip," "WiZ"
//       or "MacZip" without the explicit permission of Info-ZIP.  Such altered
//       versions are further prohibited from misrepresentative use of the
//       Zip-Bugs or Info-ZIP e-mail addresses or of the Info-ZIP URL(s).
//
//    4. Info-ZIP retains the right to use the names "Info-ZIP," "Zip," "UnZip,"
//       "WiZ," "Pocket UnZip," "Pocket Zip," and "MacZip" for its own source and
//       binary releases.
//


typedef unsigned char uch;      // unsigned 8-bit value
typedef unsigned short ush;     // unsigned 16-bit value
typedef unsigned long ulg;      // unsigned 32-bit value
typedef size_t extent;          // file size
typedef unsigned Pos;   // must be at least 32 bits
typedef unsigned IPos; // A Pos is an index in the character window. Pos is used only for parameter passing

#ifndef EOF
#define EOF (-1)
#endif


// Error return values.  The values 0..4 and 12..18 follow the conventions
// of PKZIP.   The values 4..10 are all assigned to "insufficient memory"
// by PKZIP, so the codes 5..10 are used here for other purposes.
#define ZE_MISS         -1      // used by procname(), zipbare()
#define ZE_OK           0       // success
#define ZE_EOF          2       // unexpected end of zip file
#define ZE_FORM         3       // zip file structure error
#define ZE_MEM          4       // out of memory
#define ZE_LOGIC        5       // internal logic error
#define ZE_BIG          6       // entry too large to split
#define ZE_NOTE         7       // invalid comment format
#define ZE_TEST         8       // zip test (-T) failed or out of memory
#define ZE_ABORT        9       // user interrupt or termination
#define ZE_TEMP         10      // error using a temp file
#define ZE_READ         11      // read or seek error
#define ZE_NONE         12      // nothing to do
#define ZE_NAME         13      // missing or empty zip file
#define ZE_WRITE        14      // error writing to a file
#define ZE_CREAT        15      // couldn't open to write
#define ZE_PARMS        16      // bad command line
#define ZE_OPEN         18      // could not open a specified file to read
#define ZE_MAXERR       18      // the highest error number


// internal file attribute
#define UNKNOWN (-1)
#define BINARY  0
#define ASCII   1

#define BEST -1                 // Use best method (deflation or store)
#define STORE 0                 // Store method
#define DEFLATE 8               // Deflation method

#define CRCVAL_INITIAL  0L

// MSDOS file or directory attributes
#define MSDOS_HIDDEN_ATTR 0x02
#define MSDOS_DIR_ATTR 0x10

// Lengths of headers after signatures in bytes
#define LOCHEAD 26
#define CENHEAD 42
#define ENDHEAD 18

// Definitions for extra field handling:
#define EB_HEADSIZE       4     /* length of a extra field block header */
#define EB_LEN            2     /* offset of data length field in header */
#define EB_UT_MINLEN      1     /* minimal UT field contains Flags byte */
#define EB_UT_FLAGS       0     /* byte offset of Flags field */
#define EB_UT_TIME1       1     /* byte offset of 1st time value */
#define EB_UT_FL_MTIME    (1 << 0)      /* mtime present */
#define EB_UT_FL_ATIME    (1 << 1)      /* atime present */
#define EB_UT_FL_CTIME    (1 << 2)      /* ctime present */
#define EB_UT_LEN(n)      (EB_UT_MINLEN + 4 * (n))
#define EB_L_UT_SIZE    (EB_HEADSIZE + EB_UT_LEN(3))
#define EB_C_UT_SIZE    (EB_HEADSIZE + EB_UT_LEN(1))


// Macros for writing machine integers to little-endian format
#define PUTSH(a,f) {char _putsh_c=(char)((a)&0xff); wfunc(param,&_putsh_c,1); _putsh_c=(char)((a)>>8); wfunc(param,&_putsh_c,1);}
#define PUTLG(a,f) {PUTSH((a) & 0xffff,(f)) PUTSH((a) >> 16,(f))}


// -- Structure of a ZIP file --
// Signatures for zip file information headers
#define LOCSIG     0x04034b50L
#define CENSIG     0x02014b50L
#define ENDSIG     0x06054b50L
#define EXTLOCSIG  0x08074b50L


#define MIN_MATCH  3
#define MAX_MATCH  258
// The minimum and maximum match lengths


#define WSIZE  (0x8000)
// Maximum window size = 32K. If you are really short of memory, compile
// with a smaller WSIZE but this reduces the compression ratio for files
// of size > WSIZE. WSIZE must be a power of two in the current implementation.
//

#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
// Minimum amount of lookahead, except at the end of the input file.
// See deflate.c for comments about the MIN_MATCH+1.
//

#define MAX_DIST  (WSIZE-MIN_LOOKAHEAD)
// In order to simplify the code, particularly on 16 bit machines, match
// distances are limited to MAX_DIST instead of WSIZE.
//


#define ZIP_HANDLE   1
#define ZIP_FILENAME 2
#define ZIP_MEMORY   3
#define ZIP_FOLDER   4



// ===========================================================================
// Constants
//

#define MAX_BITS 15
// All codes must not exceed MAX_BITS bits

#define MAX_BL_BITS 7
// Bit length codes must not exceed MAX_BL_BITS bits

#define LENGTH_CODES 29
// number of length codes, not counting the special END_BLOCK code

#define LITERALS  256
// number of literal bytes 0..255

#define END_BLOCK 256
// end of block literal code

#define L_CODES (LITERALS+1+LENGTH_CODES)
// number of Literal or Length codes, including the END_BLOCK code

#define D_CODES   30
// number of distance codes

#define BL_CODES  19
// number of codes used to transfer the bit lengths


#define STORED_BLOCK 0
#define STATIC_TREES 1
#define DYN_TREES    2
// The three kinds of block type

#define LIT_BUFSIZE  0x8000
#define DIST_BUFSIZE  LIT_BUFSIZE
// Sizes of match buffers for literals/lengths and distances.  There are
// 4 reasons for limiting LIT_BUFSIZE to 64K:
//   - frequencies can be kept in 16 bit counters
//   - if compression is not successful for the first block, all input data is
//     still in the window so we can still emit a stored block even when input
//     comes from standard input.  (This can also be done for all blocks if
//     LIT_BUFSIZE is not greater than 32K.)
//   - if compression is not successful for a file smaller than 64K, we can
//     even emit a stored file instead of a stored block (saving 5 bytes).
//   - creating new Huffman trees less frequently may not provide fast
//     adaptation to changes in the input data statistics. (Take for
//     example a binary file with poorly compressible code followed by
//     a highly compressible string table.) Smaller buffer sizes give
//     fast adaptation but have of course the overhead of transmitting trees
//     more frequently.
//   - I can't count above 4
// The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
// memory at the expense of compression). Some optimizations would be possible
// if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
//

#define REP_3_6      16
// repeat previous bit length 3-6 times (2 bits of repeat count)

#define REPZ_3_10    17
// repeat a zero length 3-10 times  (3 bits of repeat count)

#define REPZ_11_138  18
// repeat a zero length 11-138 times  (7 bits of repeat count)

#define HEAP_SIZE (2*L_CODES+1)
// maximum heap size


// ===========================================================================
// Local data used by the "bit string" routines.
//

#define Buf_size (8 * 2*sizeof(char))
// Number of bits used within bi_buf. (bi_buf may be implemented on
// more than 16 bits on some systems.)

// Output a 16 bit value to the bit stream, lower (oldest) byte first
#define PUTSHORT(state,w) \
{ if (state.bs.out_offset >= state.bs.out_size-1) \
    state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \
  state.bs.out_buf[state.bs.out_offset++] = (char) ((w) & 0xff); \
  state.bs.out_buf[state.bs.out_offset++] = (char) ((ush)(w) >> 8); \
}

#define PUTBYTE(state,b) \
{ if (state.bs.out_offset >= state.bs.out_size) \
    state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \
  state.bs.out_buf[state.bs.out_offset++] = (char) (b); \
}

// DEFLATE.CPP HEADER

#define HASH_BITS  15
// For portability to 16 bit machines, do not use values above 15.

#define HASH_SIZE (unsigned)(1<<HASH_BITS)
#define HASH_MASK (HASH_SIZE-1)
#define WMASK     (WSIZE-1)
// HASH_SIZE and WSIZE must be powers of two

#define NIL 0
// Tail of hash chains

#define FAST 4
#define SLOW 2
// speed options for the general purpose bit flag

#define TOO_FAR 4096
// Matches of length 3 are discarded if their distance exceeds TOO_FAR



#define EQUAL 0
// result of memcmp for equal strings


// ===========================================================================
// Local data used by the "longest match" routines.

#define H_SHIFT  ((HASH_BITS+MIN_MATCH-1)/MIN_MATCH)
// Number of bits by which ins_h and del_h must be shifted at each
// input step. It must be such that after MIN_MATCH steps, the oldest
// byte no longer takes part in the hash key, that is:
//   H_SHIFT * MIN_MATCH >= HASH_BITS

#define max_insert_length  max_lazy_match
// Insert new strings in the hash table only if the match length
// is not greater than this length. This saves time but degrades compression.
// max_insert_length is used only for compression levels <= 3.



const int extra_lbits[LENGTH_CODES] // extra bits for each length code
   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};

const int extra_dbits[D_CODES] // extra bits for each distance code
   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};

const int extra_blbits[BL_CODES]// extra bits for each bit length code
   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};

const uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
// The lengths of the bit length codes are sent in order of decreasing
// probability, to avoid transmitting the lengths for unused bit length codes.


typedef struct config {
   ush good_length; // reduce lazy search above this match length
   ush max_lazy;    // do not perform lazy search above this match length
   ush nice_length; // quit search above this match length
   ush max_chain;
} config;

// Values for max_lazy_match, good_match, nice_match and max_chain_length,
// depending on the desired pack level (0..9). The values given below have
// been tuned to exclude worst case performance for pathological files.
// Better values may be found for specific files.
//

const config configuration_table[10] = {
//  good lazy nice chain
    {0,    0,  0,    0},  // 0 store only
    {4,    4,  8,    4},  // 1 maximum speed, no lazy matches
    {4,    5, 16,    8},  // 2
    {4,    6, 32,   32},  // 3
    {4,    4, 16,   16},  // 4 lazy matches */
    {8,   16, 32,   32},  // 5
    {8,   16, 128, 128},  // 6
    {8,   32, 128, 256},  // 7
    {32, 128, 258, 1024}, // 8
    {32, 258, 258, 4096}};// 9 maximum compression */

// Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
// For deflate_fast() (levels <= 3) good is ignored and lazy has a different meaning.







// Data structure describing a single value and its code string.
typedef struct ct_data {
    union {
        ush  freq;       // frequency count
        ush  code;       // bit string
    } fc;
    union {
        ush  dad;        // father node in Huffman tree
        ush  len;        // length of bit string
    } dl;
} ct_data;

typedef struct tree_desc {
    ct_data *dyn_tree;      // the dynamic tree
    ct_data *static_tree;   // corresponding static tree or NULL
    const int *extra_bits;  // extra bits for each code or NULL
    int     extra_base;     // base index for extra_bits
    int     elems;          // max number of elements in the tree
    int     max_length;     // max bit length for the codes
    int     max_code;       // largest code with non zero frequency
} tree_desc;




class TTreeState
{ public:
  TTreeState();

  ct_data dyn_ltree[HEAP_SIZE];    // literal and length tree
  ct_data dyn_dtree[2*D_CODES+1];  // distance tree
  ct_data static_ltree[L_CODES+2]; // the static literal tree...
  // ... Since the bit lengths are imposed, there is no need for the L_CODES
  // extra codes used during heap construction. However the codes 286 and 287
  // are needed to build a canonical tree (see ct_init below).
  ct_data static_dtree[D_CODES]; // the static distance tree...
  // ... (Actually a trivial tree since all codes use 5 bits.)
  ct_data bl_tree[2*BL_CODES+1];  // Huffman tree for the bit lengths

  tree_desc l_desc;
  tree_desc d_desc;
  tree_desc bl_desc;

  ush bl_count[MAX_BITS+1];  // number of codes at each bit length for an optimal tree

  int heap[2*L_CODES+1]; // heap used to build the Huffman trees
  int heap_len;               // number of elements in the heap
  int heap_max;               // element of largest frequency
  // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
  // The same heap array is used to build all trees.

  uch depth[2*L_CODES+1];
  // Depth of each subtree used as tie breaker for trees of equal frequency

  uch length_code[MAX_MATCH-MIN_MATCH+1];
  // length code for each normalized match length (0 == MIN_MATCH)

  uch dist_code[512];
  // distance codes. The first 256 values correspond to the distances
  // 3 .. 258, the last 256 values correspond to the top 8 bits of
  // the 15 bit distances.

  int base_length[LENGTH_CODES];
  // First normalized length for each code (0 = MIN_MATCH)

  int base_dist[D_CODES];
  // First normalized distance for each code (0 = distance of 1)

  uch far l_buf[LIT_BUFSIZE];  // buffer for literals/lengths
  ush far d_buf[DIST_BUFSIZE]; // buffer for distances

  uch flag_buf[(LIT_BUFSIZE/8)];
  // flag_buf is a bit array distinguishing literals from lengths in
  // l_buf, and thus indicating the presence or absence of a distance.

  unsigned last_lit;    // running index in l_buf
  unsigned last_dist;   // running index in d_buf
  unsigned last_flags;  // running index in flag_buf
  uch flags;            // current flags not yet saved in flag_buf
  uch flag_bit;         // current bit used in flags
  // bits are filled in flags starting at bit 0 (least significant).
  // Note: these flags are overkill in the current code since we don't
  // take advantage of DIST_BUFSIZE == LIT_BUFSIZE.

  ulg opt_len;          // bit length of current block with optimal trees
  ulg static_len;       // bit length of current block with static trees

  ulg cmpr_bytelen;     // total byte length of compressed file
  ulg cmpr_len_bits;    // number of bits past 'cmpr_bytelen'

  ulg input_len;        // total byte length of input file
  // input_len is for debugging only since we can get it by other means.

  ush *file_type;       // pointer to UNKNOWN, BINARY or ASCII
//  int *file_method;     // pointer to DEFLATE or STORE
};

TTreeState::TTreeState()
{ tree_desc a = {dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0};  l_desc = a;
  tree_desc b = {dyn_dtree, static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS, 0};  d_desc = b;
  tree_desc c = {bl_tree, NULL,       extra_blbits, 0,         BL_CODES, MAX_BL_BITS, 0};  bl_desc = c;
  last_lit=0;
  last_dist=0;
  last_flags=0;
}



class TBitState
{ public:

  int flush_flg;
  //
  unsigned bi_buf;
  // Output buffer. bits are inserted starting at the bottom (least significant
  // bits). The width of bi_buf must be at least 16 bits.
  int bi_valid;
  // Number of valid bits in bi_buf.  All bits above the last valid bit
  // are always zero.
  char *out_buf;
  // Current output buffer.
  unsigned out_offset;
  // Current offset in output buffer.
  // On 16 bit machines, the buffer is limited to 64K.
  unsigned out_size;
  // Size of current output buffer
  ulg bits_sent;   // bit length of the compressed data  only needed for debugging???
};







class TDeflateState
{ public:
  TDeflateState() {window_size=0;}

  uch    window[2L*WSIZE];
  // Sliding window. Input bytes are read into the second half of the window,
  // and move to the first half later to keep a dictionary of at least WSIZE
  // bytes. With this organization, matches are limited to a distance of
  // WSIZE-MAX_MATCH bytes, but this ensures that IO is always
  // performed with a length multiple of the block size. Also, it limits
  // the window size to 64K, which is quite useful on MSDOS.
  // To do: limit the window size to WSIZE+CBSZ if SMALL_MEM (the code would
  // be less efficient since the data would have to be copied WSIZE/CBSZ times)
  Pos    prev[WSIZE];
  // Link to older string with same hash index. To limit the size of this
  // array to 64K, this link is maintained only for the last 32K strings.
  // An index in this array is thus a window index modulo 32K.
  Pos    head[HASH_SIZE];
  // Heads of the hash chains or NIL. If your compiler thinks that
  // HASH_SIZE is a dynamic value, recompile with -DDYN_ALLOC.

  ulg window_size;
  // window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
  // input file length plus MIN_LOOKAHEAD.

  long block_start;
  // window position at the beginning of the current output block. Gets
  // negative when the window is moved backwards.

  int sliding;
  // Set to false when the input file is already in memory

  unsigned ins_h;  // hash index of string to be inserted

  unsigned int prev_length;
  // Length of the best match at previous step. Matches not greater than this
  // are discarded. This is used in the lazy match evaluation.

  unsigned strstart;         // start of string to insert
  unsigned match_start; // start of matching string
  int      eofile;           // flag set at end of input file
  unsigned lookahead;        // number of valid bytes ahead in window

  unsigned max_chain_length;
  // To speed up deflation, hash chains are never searched beyond this length.
  // A higher limit improves compression ratio but degrades the speed.

  unsigned int max_lazy_match;
  // Attempt to find a better match only when the current match is strictly
  // smaller than this value. This mechanism is used only for compression
  // levels >= 4.

  unsigned good_match;
  // Use a faster search when the previous match is longer than this

  int nice_match; // Stop searching when current match exceeds this
};

typedef __int64 lutime_t;       // define it ourselves since we don't include time.h

typedef struct iztimes {
  lutime_t atime,mtime,ctime;
} iztimes; // access, modify, create times

typedef struct zlist {
  ush vem, ver, flg, how;       // See central header in zipfile.c for what vem..off are
  ulg tim, crc, siz, len;
  extent nam, ext, cext, com;   // offset of ext must be >= LOCHEAD
  ush dsk, att, lflg;           // offset of lflg must be >= LOCHEAD
  ulg atx, off;
  char name[MAX_PATH];          // File name in zip file
  char *extra;                  // Extra field (set only if ext != 0)
  char *cextra;                 // Extra in central (set only if cext != 0)
  char *comment;                // Comment (set only if com != 0)
  char iname[MAX_PATH];         // Internal file name after cleanup
  char zname[MAX_PATH];         // External version of internal name
  int mark;                     // Marker for files to operate on
  int trash;                    // Marker for files to delete
  int dosflag;                  // Set to force MSDOS file attributes
  struct zlist far *nxt;        // Pointer to next header in list
} TZipFileInfo;


struct TState;
typedef unsigned (*READFUNC)(TState &state, char *buf,unsigned size);
typedef unsigned (*FLUSHFUNC)(void *param, const char *buf, unsigned *size);
typedef unsigned (*WRITEFUNC)(void *param, const char *buf, unsigned size);
struct TState
{ void *param;
  int level; bool seekable;
  READFUNC readfunc; FLUSHFUNC flush_outbuf;
  TTreeState ts; TBitState bs; TDeflateState ds;
  const char *err;
};









void Assert(TState &state,bool cond, const char *msg)
{ if (cond) return;
  state.err=msg;
}
void __cdecl Trace(const char *x, ...) {va_list paramList; va_start(paramList, x); paramList; va_end(paramList);}
void __cdecl Tracec(bool ,const char *x, ...) {va_list paramList; va_start(paramList, x); paramList; va_end(paramList);}



// ===========================================================================
// Local (static) routines in this file.
//

void init_block     (TState &);
void pqdownheap     (TState &,ct_data *tree, int k);
void gen_bitlen     (TState &,tree_desc *desc);
void gen_codes      (TState &state,ct_data *tree, int max_code);
void build_tree     (TState &,tree_desc *desc);
void scan_tree      (TState &,ct_data *tree, int max_code);
void send_tree      (TState &state,ct_data *tree, int max_code);
int  build_bl_tree  (TState &);
void send_all_trees (TState &state,int lcodes, int dcodes, int blcodes);
void compress_block (TState &state,ct_data *ltree, ct_data *dtree);
void set_file_type  (TState &);
void send_bits      (TState &state, int value, int length);
unsigned bi_reverse (unsigned code, int len);
void bi_windup      (TState &state);
void copy_block     (TState &state,char *buf, unsigned len, int header);


#define send_code(state, c, tree) send_bits(state, tree[c].fc.code, tree[c].dl.len)
// Send a code of the given tree. c and tree must not have side effects

// alternatively...
//#define send_code(state, c, tree)
//     { if (state.verbose>1) fprintf(stderr,"\ncd %3d ",(c));
//       send_bits(state, tree[c].fc.code, tree[c].dl.len); }

#define d_code(dist) ((dist) < 256 ? state.ts.dist_code[dist] : state.ts.dist_code[256+((dist)>>7)])
// Mapping from a distance to a distance code. dist is the distance - 1 and
// must not have side effects. dist_code[256] and dist_code[257] are never used.

#define Max(a,b) (a >= b ? a : b)
/* the arguments must not have side effects */

/* ===========================================================================
 * Allocate the match buffer, initialize the various tables and save the
 * location of the internal file attribute (ascii/binary) and method
 * (DEFLATE/STORE).
 */
void ct_init(TState &state, ush *attr)
{
    int n;        /* iterates over tree elements */
    int bits;     /* bit counter */
    int length;   /* length value */
    int code;     /* code value */
    int dist;     /* distance index */

    state.ts.file_type = attr;
    //state.ts.file_method = method;
    state.ts.cmpr_bytelen = state.ts.cmpr_len_bits = 0L;
    state.ts.input_len = 0L;

    if (state.ts.static_dtree[0].dl.len != 0) return; /* ct_init already called */

    /* Initialize the mapping length (0..255) -> length code (0..28) */
    length = 0;
    for (code = 0; code < LENGTH_CODES-1; code++) {
        state.ts.base_length[code] = length;
        for (n = 0; n < (1<<extra_lbits[code]); n++) {
            state.ts.length_code[length++] = (uch)code;
        }
    }
    Assert(state,length == 256, "ct_init: length != 256");
    /* Note that the length 255 (match length 258) can be represented
     * in two different ways: code 284 + 5 bits or code 285, so we
     * overwrite length_code[255] to use the best encoding:
     */
    state.ts.length_code[length-1] = (uch)code;

    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
    dist = 0;
    for (code = 0 ; code < 16; code++) {
        state.ts.base_dist[code] = dist;
        for (n = 0; n < (1<<extra_dbits[code]); n++) {
            state.ts.dist_code[dist++] = (uch)code;
        }
    }
    Assert(state,dist == 256, "ct_init: dist != 256");
    dist >>= 7; /* from now on, all distances are divided by 128 */
    for ( ; code < D_CODES; code++) {
        state.ts.base_dist[code] = dist << 7;
        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
            state.ts.dist_code[256 + dist++] = (uch)code;
        }
    }
    Assert(state,dist == 256, "ct_init: 256+dist != 512");

    /* Construct the codes of the static literal tree */
    for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0;
    n = 0;
    while (n <= 143) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++;
    while (n <= 255) state.ts.static_ltree[n++].dl.len = 9, state.ts.bl_count[9]++;
    while (n <= 279) state.ts.static_ltree[n++].dl.len = 7, state.ts.bl_count[7]++;
    while (n <= 287) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++;
    /* fc.codes 286 and 287 do not exist, but we must include them in the
     * tree construction to get a canonical Huffman tree (longest code
     * all ones)
     */
    gen_codes(state,(ct_data *)state.ts.static_ltree, L_CODES+1);

    /* The static distance tree is trivial: */
    for (n = 0; n < D_CODES; n++) {
        state.ts.static_dtree[n].dl.len = 5;
        state.ts.static_dtree[n].fc.code = (ush)bi_reverse(n, 5);
    }

    /* Initialize the first block of the first file: */
    init_block(state);
}

/* ===========================================================================
 * Initialize a new block.
 */
void init_block(TState &state)
{
    int n; /* iterates over tree elements */

    /* Initialize the trees. */
    for (n = 0; n < L_CODES;  n++) state.ts.dyn_ltree[n].fc.freq = 0;
    for (n = 0; n < D_CODES;  n++) state.ts.dyn_dtree[n].fc.freq = 0;
    for (n = 0; n < BL_CODES; n++) state.ts.bl_tree[n].fc.freq = 0;

    state.ts.dyn_ltree[END_BLOCK].fc.freq = 1;
    state.ts.opt_len = state.ts.static_len = 0L;
    state.ts.last_lit = state.ts.last_dist = state.ts.last_flags = 0;
    state.ts.flags = 0; state.ts.flag_bit = 1;
}

#define SMALLEST 1
/* Index within the heap array of least frequent node in the Huffman tree */


/* ===========================================================================
 * Remove the smallest element from the heap and recreate the heap with
 * one less element. Updates heap and heap_len.
 */
#define pqremove(tree, top) \
{\
    top = state.ts.heap[SMALLEST]; \
    state.ts.heap[SMALLEST] = state.ts.heap[state.ts.heap_len--]; \
    pqdownheap(state,tree, SMALLEST); \
}

/* ===========================================================================
 * Compares to subtrees, using the tree depth as tie breaker when
 * the subtrees have equal frequency. This minimizes the worst case length.
 */
#define smaller(tree, n, m) \
   (tree[n].fc.freq < tree[m].fc.freq || \
   (tree[n].fc.freq == tree[m].fc.freq && state.ts.depth[n] <= state.ts.depth[m]))

/* ===========================================================================
 * Restore the heap property by moving down the tree starting at node k,
 * exchanging a node with the smallest of its two sons if necessary, stopping
 * when the heap property is re-established (each father smaller than its
 * two sons).
 */
void pqdownheap(TState &state,ct_data *tree, int k)
{
    int v = state.ts.heap[k];
    int j = k << 1;  /* left son of k */
    int htemp;       /* required because of bug in SASC compiler */

    while (j <= state.ts.heap_len) {
        /* Set j to the smallest of the two sons: */
        if (j < state.ts.heap_len && smaller(tree, state.ts.heap[j+1], state.ts.heap[j])) j++;

        /* Exit if v is smaller than both sons */
        htemp = state.ts.heap[j];
        if (smaller(tree, v, htemp)) break;

        /* Exchange v with the smallest son */
        state.ts.heap[k] = htemp;
        k = j;

        /* And continue down the tree, setting j to the left son of k */
        j <<= 1;
    }
    state.ts.heap[k] = v;
}

/* ===========================================================================
 * Compute the optimal bit lengths for a tree and update the total bit length
 * for the current block.
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
 *    above are the tree nodes sorted by increasing frequency.
 * OUT assertions: the field len is set to the optimal bit length, the
 *     array bl_count contains the frequencies for each bit length.
 *     The length opt_len is updated; static_len is also updated if stree is
 *     not null.
 */
void gen_bitlen(TState &state,tree_desc *desc)
{
    ct_data *tree  = desc->dyn_tree;
    const int *extra     = desc->extra_bits;
    int base            = desc->extra_base;
    int max_code        = desc->max_code;
    int max_length      = desc->max_length;
    ct_data *stree = desc->static_tree;
    int h;              /* heap index */
    int n, m;           /* iterate over the tree elements */
    int bits;           /* bit length */
    int xbits;          /* extra bits */
    ush f;              /* frequency */
    int overflow = 0;   /* number of elements with bit length too large */

    for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0;

    /* In a first pass, compute the optimal bit lengths (which may
     * overflow in the case of the bit length tree).
     */
    tree[state.ts.heap[state.ts.heap_max]].dl.len = 0; /* root of the heap */

    for (h = state.ts.heap_max+1; h < HEAP_SIZE; h++) {
        n = state.ts.heap[h];
        bits = tree[tree[n].dl.dad].dl.len + 1;
        if (bits > max_length) bits = max_length, overflow++;
        tree[n].dl.len = (ush)bits;
        /* We overwrite tree[n].dl.dad which is no longer needed */

        if (n > max_code) continue; /* not a leaf node */

        state.ts.bl_count[bits]++;
        xbits = 0;
        if (n >= base) xbits = extra[n-base];
        f = tree[n].fc.freq;
        state.ts.opt_len += (ulg)f * (bits + xbits);
        if (stree) state.ts.static_len += (ulg)f * (stree[n].dl.len + xbits);
    }
    if (overflow == 0) return;

    Trace("\nbit length overflow\n");
    /* This happens for example on obj2 and pic of the Calgary corpus */

    /* Find the first bit length which could increase: */
    do {
        bits = max_length-1;
        while (state.ts.bl_count[bits] == 0) bits--;
        state.ts.bl_count[bits]--;           /* move one leaf down the tree */
        state.ts.bl_count[bits+1] += (ush)2; /* move one overflow item as its brother */
        state.ts.bl_count[max_length]--;
        /* The brother of the overflow item also moves one step up,
         * but this does not affect bl_count[max_length]
         */
        overflow -= 2;
    } while (overflow > 0);

    /* Now recompute all bit lengths, scanning in increasing frequency.
     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
     * lengths instead of fixing only the wrong ones. This idea is taken
     * from 'ar' written by Haruhiko Okumura.)
     */
    for (bits = max_length; bits != 0; bits--) {
        n = state.ts.bl_count[bits];
        while (n != 0) {
            m = state.ts.heap[--h];
            if (m > max_code) continue;
            if (tree[m].dl.len != (ush)bits) {
                Trace("code %d bits %d->%d\n", m, tree[m].dl.len, bits);
                state.ts.opt_len += ((long)bits-(long)tree[m].dl.len)*(long)tree[m].fc.freq;
                tree[m].dl.len = (ush)bits;
            }
            n--;
        }
    }
}

/* ===========================================================================
 * Generate the codes for a given tree and bit counts (which need not be
 * optimal).
 * IN assertion: the array bl_count contains the bit length statistics for
 * the given tree and the field len is set for all tree elements.
 * OUT assertion: the field code is set for all tree elements of non
 *     zero code length.
 */
void gen_codes (TState &state, ct_data *tree, int max_code)
{
    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
    ush code = 0;              /* running code value */
    int bits;                  /* bit index */
    int n;                     /* code index */

    /* The distribution counts are first used to generate the code values
     * without bit reversal.
     */
    for (bits = 1; bits <= MAX_BITS; bits++) {
        next_code[bits] = code = (ush)((code + state.ts.bl_count[bits-1]) << 1);
    }
    /* Check that the bit counts in bl_count are consistent. The last code
     * must be all ones.
     */
    Assert(state,code + state.ts.bl_count[MAX_BITS]-1 == (1<< ((ush) MAX_BITS)) - 1,
            "inconsistent bit counts");
    Trace("\ngen_codes: max_code %d ", max_code);

    for (n = 0;  n <= max_code; n++) {
        int len = tree[n].dl.len;
        if (len == 0) continue;
        /* Now reverse the bits */
        tree[n].fc.code = (ush)bi_reverse(next_code[len]++, len);

        //Tracec(tree != state.ts.static_ltree, "\nn %3d %c l %2d c %4x (%x) ", n, (isgraph(n) ? n : ' '), len, tree[n].fc.code, next_code[len]-1);
    }
}

/* ===========================================================================
 * Construct one Huffman tree and assigns the code bit strings and lengths.
 * Update the total bit length for the current block.
 * IN assertion: the field freq is set for all tree elements.
 * OUT assertions: the fields len and code are set to the optimal bit length
 *     and corresponding code. The length opt_len is updated; static_len is
 *     also updated if stree is not null. The field max_code is set.
 */
void build_tree(TState &state,tree_desc *desc)
{
    ct_data *tree   = desc->dyn_tree;
    ct_data *stree  = desc->static_tree;
    int elems            = desc->elems;
    int n, m;          /* iterate over heap elements */
    int max_code = -1; /* largest code with non zero frequency */
    int node = elems;  /* next internal node of the tree */

    /* Construct the initial heap, with least frequent element in
     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
     * heap[0] is not used.
     */
    state.ts.heap_len = 0, state.ts.heap_max = HEAP_SIZE;

    for (n = 0; n < elems; n++) {
        if (tree[n].fc.freq != 0) {
            state.ts.heap[++state.ts.heap_len] = max_code = n;
            state.ts.depth[n] = 0;
        } else {
            tree[n].dl.len = 0;
        }
    }

    /* The pkzip format requires that at least one distance code exists,
     * and that at least one bit should be sent even if there is only one
     * possible code. So to avoid special checks later on we force at least
     * two codes of non zero frequency.
     */
    while (state.ts.heap_len < 2) {
        int newcp = state.ts.heap[++state.ts.heap_len] = (max_code < 2 ? ++max_code : 0);
        tree[newcp].fc.freq = 1;
        state.ts.depth[newcp] = 0;
        state.ts.opt_len--; if (stree) state.ts.static_len -= stree[newcp].dl.len;
        /* new is 0 or 1 so it does not have extra bits */
    }
    desc->max_code = max_code;

    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
     * establish sub-heaps of increasing lengths:
     */
    for (n = state.ts.heap_len/2; n >= 1; n--) pqdownheap(state,tree, n);

    /* Construct the Huffman tree by repeatedly combining the least two
     * frequent nodes.
     */
    do {
        pqremove(tree, n);   /* n = node of least frequency */
        m = state.ts.heap[SMALLEST];  /* m = node of next least frequency */

        state.ts.heap[--state.ts.heap_max] = n; /* keep the nodes sorted by frequency */
        state.ts.heap[--state.ts.heap_max] = m;

        /* Create a new node father of n and m */
        tree[node].fc.freq = (ush)(tree[n].fc.freq + tree[m].fc.freq);
        state.ts.depth[node] = (uch) (Max(state.ts.depth[n], state.ts.depth[m]) + 1);
        tree[n].dl.dad = tree[m].dl.dad = (ush)node;
        /* and insert the new node in the heap */
        state.ts.heap[SMALLEST] = node++;
        pqdownheap(state,tree, SMALLEST);

    } while (state.ts.heap_len >= 2);

    state.ts.heap[--state.ts.heap_max] = state.ts.heap[SMALLEST];

    /* At this point, the fields freq and dad are set. We can now
     * generate the bit lengths.
     */
    gen_bitlen(state,(tree_desc *)desc);

    /* The field len is now set, we can generate the bit codes */
    gen_codes (state,(ct_data *)tree, max_code);
}

/* ===========================================================================
 * Scan a literal or distance tree to determine the frequencies of the codes
 * in the bit length tree. Updates opt_len to take into account the repeat
 * counts. (The contribution of the bit length codes will be added later
 * during the construction of bl_tree.)
 */
void scan_tree (TState &state,ct_data *tree, int max_code)
{
    int n;                     /* iterates over all tree elements */
    int prevlen = -1;          /* last emitted length */
    int curlen;                /* length of current code */
    int nextlen = tree[0].dl.len; /* length of next code */
    int count = 0;             /* repeat count of the current code */
    int max_count = 7;         /* max repeat count */
    int min_count = 4;         /* min repeat count */

    if (nextlen == 0) max_count = 138, min_count = 3;
    tree[max_code+1].dl.len = (ush)-1; /* guard */

    for (n = 0; n <= max_code; n++) {
        curlen = nextlen; nextlen = tree[n+1].dl.len;
        if (++count < max_count && curlen == nextlen) {
            continue;
        } else if (count < min_count) {
            state.ts.bl_tree[curlen].fc.freq = (ush)(state.ts.bl_tree[curlen].fc.freq + count);
        } else if (curlen != 0) {
            if (curlen != prevlen) state.ts.bl_tree[curlen].fc.freq++;
            state.ts.bl_tree[REP_3_6].fc.freq++;
        } else if (count <= 10) {
            state.ts.bl_tree[REPZ_3_10].fc.freq++;
        } else {
            state.ts.bl_tree[REPZ_11_138].fc.freq++;
        }
        count = 0; prevlen = curlen;
        if (nextlen == 0) {
            max_count = 138, min_count = 3;
        } else if (curlen == nextlen) {
            max_count = 6, min_count = 3;
        } else {
            max_count = 7, min_count = 4;
        }
    }
}

/* ===========================================================================
 * Send a literal or distance tree in compressed form, using the codes in
 * bl_tree.
 */
void send_tree (TState &state, ct_data *tree, int max_code)
{
    int n;                     /* iterates over all tree elements */
    int prevlen = -1;          /* last emitted length */
    int curlen;                /* length of current code */
    int nextlen = tree[0].dl.len; /* length of next code */
    int count = 0;             /* repeat count of the current code */
    int max_count = 7;         /* max repeat count */
    int min_count = 4;         /* min repeat count */

    /* tree[max_code+1].dl.len = -1; */  /* guard already set */
    if (nextlen == 0) max_count = 138, min_count = 3;

    for (n = 0; n <= max_code; n++) {
        curlen = nextlen; nextlen = tree[n+1].dl.len;
        if (++count < max_count && curlen == nextlen) {
            continue;
        } else if (count < min_count) {
            do { send_code(state, curlen, state.ts.bl_tree); } while (--count != 0);

        } else if (curlen != 0) {
            if (curlen != prevlen) {
                send_code(state, curlen, state.ts.bl_tree); count--;
            }
            Assert(state,count >= 3 && count <= 6, " 3_6?");
            send_code(state,REP_3_6, state.ts.bl_tree); send_bits(state,count-3, 2);

        } else if (count <= 10) {
            send_code(state,REPZ_3_10, state.ts.bl_tree); send_bits(state,count-3, 3);

        } else {
            send_code(state,REPZ_11_138, state.ts.bl_tree); send_bits(state,count-11, 7);
        }
        count = 0; prevlen = curlen;
        if (nextlen == 0) {
            max_count = 138, min_count = 3;
        } else if (curlen == nextlen) {
            max_count = 6, min_count = 3;
        } else {
            max_count = 7, min_count = 4;
        }
    }
}

/* ===========================================================================
 * Construct the Huffman tree for the bit lengths and return the index in
 * bl_order of the last bit length code to send.
 */
int build_bl_tree(TState &state)
{
    int max_blindex;  /* index of last bit length code of non zero freq */

    /* Determine the bit length frequencies for literal and distance trees */
    scan_tree(state,(ct_data *)state.ts.dyn_ltree, state.ts.l_desc.max_code);
    scan_tree(state,(ct_data *)state.ts.dyn_dtree, state.ts.d_desc.max_code);

    /* Build the bit length tree: */
    build_tree(state,(tree_desc *)(&state.ts.bl_desc));
    /* opt_len now includes the length of the tree representations, except
     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
     */

    /* Determine the number of bit length codes to send. The pkzip format
     * requires that at least 4 bit length codes be sent. (appnote.txt says
     * 3 but the actual value used is 4.)
     */
    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
        if (state.ts.bl_tree[bl_order[max_blindex]].dl.len != 0) break;
    }
    /* Update opt_len to include the bit length tree and counts */
    state.ts.opt_len += 3*(max_blindex+1) + 5+5+4;
    Trace("\ndyn trees: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);

    return max_blindex;
}

/* ===========================================================================
 * Send the header for a block using dynamic Huffman trees: the counts, the
 * lengths of the bit length codes, the literal tree and the distance tree.
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 */
void send_all_trees(TState &state,int lcodes, int dcodes, int blcodes)
{
    int rank;                    /* index in bl_order */

    Assert(state,lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
    Assert(state,lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
            "too many codes");
    Trace("\nbl counts: ");
    send_bits(state,lcodes-257, 5);
    /* not +255 as stated in appnote.txt 1.93a or -256 in 2.04c */
    send_bits(state,dcodes-1,   5);
    send_bits(state,blcodes-4,  4); /* not -3 as stated in appnote.txt */
    for (rank = 0; rank < blcodes; rank++) {
        Trace("\nbl code %2d ", bl_order[rank]);
        send_bits(state,state.ts.bl_tree[bl_order[rank]].dl.len, 3);
    }    
    Trace("\nbl tree: sent %ld", state.bs.bits_sent);

    send_tree(state,(ct_data *)state.ts.dyn_ltree, lcodes-1); /* send the literal tree */
    Trace("\nlit tree: sent %ld", state.bs.bits_sent);

    send_tree(state,(ct_data *)state.ts.dyn_dtree, dcodes-1); /* send the distance tree */
    Trace("\ndist tree: sent %ld", state.bs.bits_sent);
}

/* ===========================================================================
 * Determine the best encoding for the current block: dynamic trees, static
 * trees or store, and output the encoded block to the zip file. This function
 * returns the total compressed length (in bytes) for the file so far.
 */
ulg flush_block(TState &state,char *buf, ulg stored_len, int eof)
{
    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
    int max_blindex;  /* index of last bit length code of non zero freq */

    state.ts.flag_buf[state.ts.last_flags] = state.ts.flags; /* Save the flags for the last 8 items */

     /* Check if the file is ascii or binary */
    if (*state.ts.file_type == (ush)UNKNOWN) set_file_type(state);

    /* Construct the literal and distance trees */
    build_tree(state,(tree_desc *)(&state.ts.l_desc));
    Trace("\nlit data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);

    build_tree(state,(tree_desc *)(&state.ts.d_desc));
    Trace("\ndist data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);
    /* At this point, opt_len and static_len are the total bit lengths of
     * the compressed block data, excluding the tree representations.
     */

    /* Build the bit length tree for the above two trees, and get the index
     * in bl_order of the last bit length code to send.
     */
    max_blindex = build_bl_tree(state);

    /* Determine the best encoding. Compute first the block length in bytes */
    opt_lenb = (state.ts.opt_len+3+7)>>3;
    static_lenb = (state.ts.static_len+3+7)>>3;
    state.ts.input_len += stored_len; /* for debugging only */

    Trace("\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
            opt_lenb, state.ts.opt_len, static_lenb, state.ts.static_len, stored_len,
            state.ts.last_lit, state.ts.last_dist);

    if (static_lenb <= opt_lenb) opt_lenb = static_lenb;

    // Originally, zip allowed the file to be transformed from a compressed
    // into a stored file in the case where compression failed, there
    // was only one block, and it was allowed to change. I've removed this
    // possibility since the code's cleaner if no changes are allowed.
    //if (stored_len <= opt_lenb && eof && state.ts.cmpr_bytelen == 0L
    //   && state.ts.cmpr_len_bits == 0L && state.seekable)
    //{   // && state.ts.file_method != NULL
    //    // Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there:
    //    Assert(state,buf!=NULL,"block vanished");
    //    copy_block(state,buf, (unsigned)stored_len, 0); // without header
    //    state.ts.cmpr_bytelen = stored_len;
    //    Assert(state,false,"unimplemented *state.ts.file_method = STORE;");
    //    //*state.ts.file_method = STORE;
    //}
    //else
    if (stored_len+4 <= opt_lenb && buf != (char*)NULL) {
                       /* 4: two words for the lengths */
        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
         * Otherwise we can't have processed more than WSIZE input bytes since
         * the last block flush, because compression would have been
         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
         * transform a block into a stored block.
         */
        send_bits(state,(STORED_BLOCK<<1)+eof, 3);  /* send block type */
        state.ts.cmpr_bytelen += ((state.ts.cmpr_len_bits + 3 + 7) >> 3) + stored_len + 4;
        state.ts.cmpr_len_bits = 0L;

        copy_block(state,buf, (unsigned)stored_len, 1); /* with header */
    }
    else if (static_lenb == opt_lenb) {
        send_bits(state,(STATIC_TREES<<1)+eof, 3);
        compress_block(state,(ct_data *)state.ts.static_ltree, (ct_data *)state.ts.static_dtree);
        state.ts.cmpr_len_bits += 3 + state.ts.static_len;
        state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3;
        state.ts.cmpr_len_bits &= 7L;
    }
    else {
        send_bits(state,(DYN_TREES<<1)+eof, 3);
        send_all_trees(state,state.ts.l_desc.max_code+1, state.ts.d_desc.max_code+1, max_blindex+1);
        compress_block(state,(ct_data *)state.ts.dyn_ltree, (ct_data *)state.ts.dyn_dtree);
        state.ts.cmpr_len_bits += 3 + state.ts.opt_len;
        state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3;
        state.ts.cmpr_len_bits &= 7L;
    }
    Assert(state,((state.ts.cmpr_bytelen << 3) + state.ts.cmpr_len_bits) == state.bs.bits_sent, "bad compressed size");
    init_block(state);

    if (eof) {
        // Assert(state,input_len == isize, "bad input size");
        bi_windup(state);
        state.ts.cmpr_len_bits += 7;  /* align on byte boundary */
    }
    Trace("\n");

    return state.ts.cmpr_bytelen + (state.ts.cmpr_len_bits >> 3);
}

/* ===========================================================================
 * Save the match info and tally the frequency counts. Return true if
 * the current block must be flushed.
 */
int ct_tally (TState &state,int dist, int lc)
{
    state.ts.l_buf[state.ts.last_lit++] = (uch)lc;
    if (dist == 0) {
        /* lc is the unmatched char */
        state.ts.dyn_ltree[lc].fc.freq++;
    } else {
        /* Here, lc is the match length - MIN_MATCH */
        dist--;             /* dist = match distance - 1 */
        Assert(state,(ush)dist < (ush)MAX_DIST &&
               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
               (ush)d_code(dist) < (ush)D_CODES,  "ct_tally: bad match");

        state.ts.dyn_ltree[state.ts.length_code[lc]+LITERALS+1].fc.freq++;
        state.ts.dyn_dtree[d_code(dist)].fc.freq++;

        state.ts.d_buf[state.ts.last_dist++] = (ush)dist;
        state.ts.flags |= state.ts.flag_bit;
    }
    state.ts.flag_bit <<= 1;

    /* Output the flags if they fill a byte: */
    if ((state.ts.last_lit & 7) == 0) {
        state.ts.flag_buf[state.ts.last_flags++] = state.ts.flags;
        state.ts.flags = 0, state.ts.flag_bit = 1;
    }
    /* Try to guess if it is profitable to stop the current block here */
    if (state.level > 2 && (state.ts.last_lit & 0xfff) == 0) {
        /* Compute an upper bound for the compressed length */
        ulg out_length = (ulg)state.ts.last_lit*8L;
        ulg in_length = (ulg)state.ds.strstart-state.ds.block_start;
        int dcode;
        for (dcode = 0; dcode < D_CODES; dcode++) {
            out_length += (ulg)state.ts.dyn_dtree[dcode].fc.freq*(5L+extra_dbits[dcode]);
        }
        out_length >>= 3;
        Trace("\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
               state.ts.last_lit, state.ts.last_dist, in_length, out_length,
               100L - out_length*100L/in_length);
        if (state.ts.last_dist < state.ts.last_lit/2 && out_length < in_length/2) return 1;
    }
    return (state.ts.last_lit == LIT_BUFSIZE-1 || state.ts.last_dist == DIST_BUFSIZE);
    /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
     * on 16 bit machines and because stored blocks are restricted to
     * 64K-1 bytes.
     */
}

/* ===========================================================================
 * Send the block data compressed using the given Huffman trees
 */
void compress_block(TState &state,ct_data *ltree, ct_data *dtree)
{
    unsigned dist;      /* distance of matched string */
    int lc;             /* match length or unmatched char (if dist == 0) */
    unsigned lx = 0;    /* running index in l_buf */
    unsigned dx = 0;    /* running index in d_buf */
    unsigned fx = 0;    /* running index in flag_buf */
    uch flag = 0;       /* current flags */
    unsigned code;      /* the code to send */
    int extra;          /* number of extra bits to send */

    if (state.ts.last_lit != 0) do {
        if ((lx & 7) == 0) flag = state.ts.flag_buf[fx++];
        lc = state.ts.l_buf[lx++];
        if ((flag & 1) == 0) {
            send_code(state,lc, ltree); /* send a literal byte */
        } else {
            /* Here, lc is the match length - MIN_MATCH */
            code = state.ts.length_code[lc];
            send_code(state,code+LITERALS+1, ltree); /* send the length code */
            extra = extra_lbits[code];
            if (extra != 0) {
                lc -= state.ts.base_length[code];
                send_bits(state,lc, extra);        /* send the extra length bits */
            }
            dist = state.ts.d_buf[dx++];
            /* Here, dist is the match distance - 1 */
            code = d_code(dist);
            Assert(state,code < D_CODES, "bad d_code");

            send_code(state,code, dtree);       /* send the distance code */
            extra = extra_dbits[code];
            if (extra != 0) {
                dist -= state.ts.base_dist[code];
                send_bits(state,dist, extra);   /* send the extra distance bits */
            }
        } /* literal or match pair ? */
        flag >>= 1;
    } while (lx < state.ts.last_lit);

    send_code(state,END_BLOCK, ltree);
}

/* ===========================================================================
 * Set the file type to ASCII or BINARY, using a crude approximation:
 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
 * IN assertion: the fields freq of dyn_ltree are set and the total of all
 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
 */
void set_file_type(TState &state)
{
    int n = 0;
    unsigned ascii_freq = 0;
    unsigned bin_freq = 0;
    while (n < 7)        bin_freq += state.ts.dyn_ltree[n++].fc.freq;
    while (n < 128)    ascii_freq += state.ts.dyn_ltree[n++].fc.freq;
    while (n < LITERALS) bin_freq += state.ts.dyn_ltree[n++].fc.freq;
    *state.ts.file_type = (ush)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
}


/* ===========================================================================
 * Initialize the bit string routines.
 */
void bi_init (TState &state,char *tgt_buf, unsigned tgt_size, int flsh_allowed)
{
    state.bs.out_buf = tgt_buf;
    state.bs.out_size = tgt_size;
    state.bs.out_offset = 0;
    state.bs.flush_flg = flsh_allowed;

    state.bs.bi_buf = 0;
    state.bs.bi_valid = 0;
    state.bs.bits_sent = 0L;
}

/* ===========================================================================
 * Send a value on a given number of bits.
 * IN assertion: length <= 16 and value fits in length bits.
 */
void send_bits(TState &state,int value, int length)
{
    Assert(state,length > 0 && length <= 15, "invalid length");
    state.bs.bits_sent += (ulg)length;
    /* If not enough room in bi_buf, use (bi_valid) bits from bi_buf and
     * (Buf_size - bi_valid) bits from value to flush the filled bi_buf,
     * then fill in the rest of (value), leaving (length - (Buf_size-bi_valid))
     * unused bits in bi_buf.
     */
    state.bs.bi_buf |= (value << state.bs.bi_valid);
    state.bs.bi_valid += length;
    if (state.bs.bi_valid > (int)Buf_size) {
        PUTSHORT(state,state.bs.bi_buf);
        state.bs.bi_valid -= Buf_size;
        state.bs.bi_buf = (unsigned)value >> (length - state.bs.bi_valid);
    }
}

/* ===========================================================================
 * Reverse the first len bits of a code, using straightforward code (a faster
 * method would use a table)
 * IN assertion: 1 <= len <= 15
 */
unsigned bi_reverse(unsigned code, int len)
{
    register unsigned res = 0;
    do {
        res |= code & 1;
        code >>= 1, res <<= 1;
    } while (--len > 0);
    return res >> 1;
}

/* ===========================================================================
 * Write out any remaining bits in an incomplete byte.
 */
void bi_windup(TState &state)
{
    if (state.bs.bi_valid > 8) {
        PUTSHORT(state,state.bs.bi_buf);
    } else if (state.bs.bi_valid > 0) {
        PUTBYTE(state,state.bs.bi_buf);
    }
    if (state.bs.flush_flg) {
        state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset);
    }
    state.bs.bi_buf = 0;
    state.bs.bi_valid = 0;
    state.bs.bits_sent = (state.bs.bits_sent+7) & ~7;
}

/* ===========================================================================
 * Copy a stored block to the zip file, storing first the length and its
 * one's complement if requested.
 */
void copy_block(TState &state, char *block, unsigned len, int header)
{
    bi_windup(state);              /* align on byte boundary */

    if (header) {
        PUTSHORT(state,(ush)len);
        PUTSHORT(state,(ush)~len);
        state.bs.bits_sent += 2*16;
    }
    if (state.bs.flush_flg) {
        state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset);
        state.bs.out_offset = len;
        state.flush_outbuf(state.param,block, &state.bs.out_offset);
    } else if (state.bs.out_offset + len > state.bs.out_size) {
        Assert(state,false,"output buffer too small for in-memory compression");
    } else {
        memcpy(state.bs.out_buf + state.bs.out_offset, block, len);
        state.bs.out_offset += len;
    }
    state.bs.bits_sent += (ulg)len<<3;
}








/* ===========================================================================
 *  Prototypes for functions.
 */

void fill_window  (TState &state);
ulg deflate_fast  (TState &state);

int  longest_match (TState &state,IPos cur_match);


/* ===========================================================================
 * Update a hash value with the given input byte
 * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
 *    input characters, so that a running hash key can be computed from the
 *    previous key instead of complete recalculation each time.
 */
#define UPDATE_HASH(h,c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)

/* ===========================================================================
 * Insert string s in the dictionary and set match_head to the previous head
 * of the hash chain (the most recent string with same hash key). Return
 * the previous length of the hash chain.
 * IN  assertion: all calls to to INSERT_STRING are made with consecutive
 *    input characters and the first MIN_MATCH bytes of s are valid
 *    (except for the last MIN_MATCH-1 bytes of the input file).
 */
#define INSERT_STRING(s, match_head) \
   (UPDATE_HASH(state.ds.ins_h, state.ds.window[(s) + (MIN_MATCH-1)]), \
    state.ds.prev[(s) & WMASK] = match_head = state.ds.head[state.ds.ins_h], \
    state.ds.head[state.ds.ins_h] = (s))

/* ===========================================================================
 * Initialize the "longest match" routines for a new file
 *
 * IN assertion: window_size is > 0 if the input file is already read or
 *    mmap'ed in the window[] array, 0 otherwise. In the first case,
 *    window_size is sufficient to contain the whole input file plus
 *    MIN_LOOKAHEAD bytes (to avoid referencing memory beyond the end
 *    of window[] when looking for matches towards the end).
 */
void lm_init (TState &state, int pack_level, ush *flags)
{
    register unsigned j;

    Assert(state,pack_level>=1 && pack_level<=8,"bad pack level");

    /* Do not slide the window if the whole input is already in memory
     * (window_size > 0)
     */
    state.ds.sliding = 0;
    if (state.ds.window_size == 0L) {
        state.ds.sliding = 1;
        state.ds.window_size = (ulg)2L*WSIZE;
    }

    /* Initialize the hash table (avoiding 64K overflow for 16 bit systems).
     * prev[] will be initialized on the fly.
     */
    state.ds.head[HASH_SIZE-1] = NIL;
    memset((char*)state.ds.head, NIL, (unsigned)(HASH_SIZE-1)*sizeof(*state.ds.head));

    /* Set the default configuration parameters:
     */
    state.ds.max_lazy_match   = configuration_table[pack_level].max_lazy;
    state.ds.good_match       = configuration_table[pack_level].good_length;
    state.ds.nice_match       = configuration_table[pack_level].nice_length;
    state.ds.max_chain_length = configuration_table[pack_level].max_chain;
    if (pack_level <= 2) {
       *flags |= FAST;
    } else if (pack_level >= 8) {
       *flags |= SLOW;
    }
    /* ??? reduce max_chain_length for binary files */

    state.ds.strstart = 0;
    state.ds.block_start = 0L;

    j = WSIZE;
    j <<= 1; // Can read 64K in one step
    state.ds.lookahead = state.readfunc(state, (char*)state.ds.window, j);

    if (state.ds.lookahead == 0 || state.ds.lookahead == (unsigned)EOF) {
       state.ds.eofile = 1, state.ds.lookahead = 0;
       return;
    }
    state.ds.eofile = 0;
    /* Make sure that we always have enough lookahead. This is important
     * if input comes from a device such as a tty.
     */
    if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);

    state.ds.ins_h = 0;
    for (j=0; j<MIN_MATCH-1; j++) UPDATE_HASH(state.ds.ins_h, state.ds.window[j]);
    /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
     * not important since only literal bytes will be emitted.
     */
}


/* ===========================================================================
 * Set match_start to the longest match starting at the given string and
 * return its length. Matches shorter or equal to prev_length are discarded,
 * in which case the result is equal to prev_length and match_start is
 * garbage.
 * IN assertions: cur_match is the head of the hash chain for the current
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 */
// For 80x86 and 680x0 and ARM, an optimized version is in match.asm or
// match.S. The code is functionally equivalent, so you can use the C version
// if desired. Which I do so desire!
int longest_match(TState &state,IPos cur_match)
{
    unsigned chain_length = state.ds.max_chain_length;   /* max hash chain length */
    register uch far *scan = state.ds.window + state.ds.strstart; /* current string */
    register uch far *match;                    /* matched string */
    register int len;                           /* length of current match */
    int best_len = state.ds.prev_length;                 /* best match length so far */
    IPos limit = state.ds.strstart > (IPos)MAX_DIST ? state.ds.strstart - (IPos)MAX_DIST : NIL;
    /* Stop when cur_match becomes <= limit. To simplify the code,
     * we prevent matches with the string of window index 0.
     */

  // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
  // It is easy to get rid of this optimization if necessary.
    Assert(state,HASH_BITS>=8 && MAX_MATCH==258,"Code too clever");



    register uch far *strend = state.ds.window + state.ds.strstart + MAX_MATCH;
    register uch scan_end1  = scan[best_len-1];
    register uch scan_end   = scan[best_len];

    /* Do not waste too much time if we already have a good match: */
    if (state.ds.prev_length >= state.ds.good_match) {
        chain_length >>= 2;
    }

    Assert(state,state.ds.strstart <= state.ds.window_size-MIN_LOOKAHEAD, "insufficient lookahead");

    do {
        Assert(state,cur_match < state.ds.strstart, "no future");
        match = state.ds.window + cur_match;

        /* Skip to next match if the match length cannot increase
         * or if the match length is less than 2:
         */
        if (match[best_len]   != scan_end  ||
            match[best_len-1] != scan_end1 ||
            *match            != *scan     ||
            *++match          != scan[1])      continue;

        /* The check at best_len-1 can be removed because it will be made
         * again later. (This heuristic is not always a win.)
         * It is not necessary to compare scan[2] and match[2] since they
         * are always equal when the other bytes match, given that
         * the hash keys are equal and that HASH_BITS >= 8.
         */
        scan += 2, match++;

        /* We check for insufficient lookahead only every 8th comparison;
         * the 256th check will be made at strstart+258.
         */
        do {
        } while (*++scan == *++match && *++scan == *++match &&
                 *++scan == *++match && *++scan == *++match &&
                 *++scan == *++match && *++scan == *++match &&
                 *++scan == *++match && *++scan == *++match &&
                 scan < strend);

        Assert(state,scan <= state.ds.window+(unsigned)(state.ds.window_size-1), "wild scan");
                          
        len = MAX_MATCH - (int)(strend - scan);
        scan = strend - MAX_MATCH;


        if (len > best_len) {
            state.ds.match_start = cur_match;
            best_len = len;
            if (len >= state.ds.nice_match) break;
            scan_end1  = scan[best_len-1];
            scan_end   = scan[best_len];
        }
    } while ((cur_match = state.ds.prev[cur_match & WMASK]) > limit
             && --chain_length != 0);

    return best_len;
}



#define check_match(state,start, match, length)
// or alternatively...
//void check_match(TState &state,IPos start, IPos match, int length)
//{ // check that the match is indeed a match
//    if (memcmp((char*)state.ds.window + match,
//                (char*)state.ds.window + start, length) != EQUAL) {
//        fprintf(stderr,
//            " start %d, match %d, length %d\n",
//            start, match, length);
//        error("invalid match");
//    }
//    if (state.verbose > 1) {
//        fprintf(stderr,"\\[%d,%d]", start-match, length);
//        do { fprintf(stdout,"%c",state.ds.window[start++]); } while (--length != 0);
//    }
//}

/* ===========================================================================
 * Fill the window when the lookahead becomes insufficient.
 * Updates strstart and lookahead, and sets eofile if end of input file.
 *
 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 *    At least one byte has been read, or eofile is set; file reads are
 *    performed for at least two bytes (required for the translate_eol option).
 */
void fill_window(TState &state)
{
    register unsigned n, m;
    unsigned more;    /* Amount of free space at the end of the window. */

    do {
        more = (unsigned)(state.ds.window_size - (ulg)state.ds.lookahead - (ulg)state.ds.strstart);

        /* If the window is almost full and there is insufficient lookahead,
         * move the upper half to the lower one to make room in the upper half.
         */
        if (more == (unsigned)EOF) {
            /* Very unlikely, but possible on 16 bit machine if strstart == 0
             * and lookahead == 1 (input done one byte at time)
             */
            more--;

        /* For MMAP or BIG_MEM, the whole input file is already in memory so
         * we must not perform sliding. We must however call (*read_buf)() in
         * order to compute the crc, update lookahead and possibly set eofile.
         */
        } else if (state.ds.strstart >= WSIZE+MAX_DIST && state.ds.sliding) {

            /* By the IN assertion, the window is not empty so we can't confuse
             * more == 0 with more == 64K on a 16 bit machine.
             */
            memcpy((char*)state.ds.window, (char*)state.ds.window+WSIZE, (unsigned)WSIZE);
            state.ds.match_start -= WSIZE;
            state.ds.strstart    -= WSIZE; /* we now have strstart >= MAX_DIST: */

            state.ds.block_start -= (long) WSIZE;

            for (n = 0; n < HASH_SIZE; n++) {
                m = state.ds.head[n];
                state.ds.head[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL);
            }
            for (n = 0; n < WSIZE; n++) {
                m = state.ds.prev[n];
                state.ds.prev[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL);
                /* If n is not on any hash chain, prev[n] is garbage but
                 * its value will never be used.
                 */
            }
            more += WSIZE;
        }
        if (state.ds.eofile) return;

        /* If there was no sliding:
         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
         *    more == window_size - lookahead - strstart
         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
         * => more >= window_size - 2*WSIZE + 2
         * In the MMAP or BIG_MEM case (not yet supported in gzip),
         *   window_size == input_size + MIN_LOOKAHEAD  &&
         *   strstart + lookahead <= input_size => more >= MIN_LOOKAHEAD.
         * Otherwise, window_size == 2*WSIZE so more >= 2.
         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
         */
        Assert(state,more >= 2, "more < 2");

        n = state.readfunc(state, (char*)state.ds.window+state.ds.strstart+state.ds.lookahead, more);

        if (n == 0 || n == (unsigned)EOF) {
            state.ds.eofile = 1;
        } else {
            state.ds.lookahead += n;
        }
    } while (state.ds.lookahead < MIN_LOOKAHEAD && !state.ds.eofile);
}

/* ===========================================================================
 * Flush the current block, with given end-of-file flag.
 * IN assertion: strstart is set to the end of the current match.
 */
#define FLUSH_BLOCK(state,eof) \
   flush_block(state,state.ds.block_start >= 0L ? (char*)&state.ds.window[(unsigned)state.ds.block_start] : \
                (char*)NULL, (long)state.ds.strstart - state.ds.block_start, (eof))

/* ===========================================================================
 * Processes a new input file and return its compressed length. This
 * function does not perform lazy evaluation of matches and inserts
 * new strings in the dictionary only for unmatched strings or for short
 * matches. It is used only for the fast compression options.
 */
ulg deflate_fast(TState &state)
{
    IPos hash_head = NIL;       /* head of the hash chain */
    int flush;                  /* set if current block must be flushed */
    unsigned match_length = 0;  /* length of best match */

    state.ds.prev_length = MIN_MATCH-1;
    while (state.ds.lookahead != 0) {
        /* Insert the string window[strstart .. strstart+2] in the
         * dictionary, and set hash_head to the head of the hash chain:
         */
        if (state.ds.lookahead >= MIN_MATCH)
        INSERT_STRING(state.ds.strstart, hash_head);

        /* Find the longest match, discarding those <= prev_length.
         * At this point we have always match_length < MIN_MATCH
         */
        if (hash_head != NIL && state.ds.strstart - hash_head <= MAX_DIST) {
            /* To simplify the code, we prevent matches with the string
             * of window index 0 (in particular we have to avoid a match
             * of the string with itself at the start of the input file).
             */
            /* Do not look for matches beyond the end of the input.
             * This is necessary to make deflate deterministic.
             */
            if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead;
            match_length = longest_match (state,hash_head);
            /* longest_match() sets match_start */
            if (match_length > state.ds.lookahead) match_length = state.ds.lookahead;
        }
        if (match_length >= MIN_MATCH) {
            check_match(state,state.ds.strstart, state.ds.match_start, match_length);

            flush = ct_tally(state,state.ds.strstart-state.ds.match_start, match_length - MIN_MATCH);

            state.ds.lookahead -= match_length;

            /* Insert new strings in the hash table only if the match length
             * is not too large. This saves time but degrades compression.
             */
            if (match_length <= state.ds.max_insert_length
                && state.ds.lookahead >= MIN_MATCH) {
                match_length--; /* string at strstart already in hash table */
                do {
                    state.ds.strstart++;
                    INSERT_STRING(state.ds.strstart, hash_head);
                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
                     * always MIN_MATCH bytes ahead.
                     */
                } while (--match_length != 0);
                state.ds.strstart++;
            } else {
                state.ds.strstart += match_length;
                match_length = 0;
                state.ds.ins_h = state.ds.window[state.ds.strstart];
                UPDATE_HASH(state.ds.ins_h, state.ds.window[state.ds.strstart+1]);
                Assert(state,MIN_MATCH==3,"Call UPDATE_HASH() MIN_MATCH-3 more times");
            }
        } else {
            /* No match, output a literal byte */
            flush = ct_tally (state,0, state.ds.window[state.ds.strstart]);
            state.ds.lookahead--;
            state.ds.strstart++;
        }
        if (flush) FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart;

        /* Make sure that we always have enough lookahead, except
         * at the end of the input file. We need MAX_MATCH bytes
         * for the next match, plus MIN_MATCH bytes to insert the
         * string following the next match.
         */
        if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);
    }
    return FLUSH_BLOCK(state,1); /* eof */
}

/* ===========================================================================
 * Same as above, but achieves better compression. We use a lazy
 * evaluation for matches: a match is finally adopted only if there is
 * no better match at the next window position.
 */
ulg deflate(TState &state)
{
    IPos hash_head = NIL;       /* head of hash chain */
    IPos prev_match;            /* previous match */
    int flush;                  /* set if current block must be flushed */
    int match_available = 0;    /* set if previous match exists */
    register unsigned match_length = MIN_MATCH-1; /* length of best match */

    if (state.level <= 3) return deflate_fast(state); /* optimized for speed */

    /* Process the input block. */
    while (state.ds.lookahead != 0) {
        /* Insert the string window[strstart .. strstart+2] in the
         * dictionary, and set hash_head to the head of the hash chain:
         */
        if (state.ds.lookahead >= MIN_MATCH)
        INSERT_STRING(state.ds.strstart, hash_head);

        /* Find the longest match, discarding those <= prev_length.
         */
        state.ds.prev_length = match_length, prev_match = state.ds.match_start;
        match_length = MIN_MATCH-1;

        if (hash_head != NIL && state.ds.prev_length < state.ds.max_lazy_match &&
            state.ds.strstart - hash_head <= MAX_DIST) {
            /* To simplify the code, we prevent matches with the string
             * of window index 0 (in particular we have to avoid a match
             * of the string with itself at the start of the input file).
             */
            /* Do not look for matches beyond the end of the input.
             * This is necessary to make deflate deterministic.
             */
            if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead;
            match_length = longest_match (state,hash_head);
            /* longest_match() sets match_start */
            if (match_length > state.ds.lookahead) match_length = state.ds.lookahead;

            /* Ignore a length 3 match if it is too distant: */
            if (match_length == MIN_MATCH && state.ds.strstart-state.ds.match_start > TOO_FAR){
                /* If prev_match is also MIN_MATCH, match_start is garbage
                 * but we will ignore the current match anyway.
                 */
                match_length = MIN_MATCH-1;
            }
        }
        /* If there was a match at the previous step and the current
         * match is not better, output the previous match:
         */
        if (state.ds.prev_length >= MIN_MATCH && match_length <= state.ds.prev_length) {
            unsigned max_insert = state.ds.strstart + state.ds.lookahead - MIN_MATCH;
            check_match(state,state.ds.strstart-1, prev_match, state.ds.prev_length);
            flush = ct_tally(state,state.ds.strstart-1-prev_match, state.ds.prev_length - MIN_MATCH);

            /* Insert in hash table all strings up to the end of the match.
             * strstart-1 and strstart are already inserted.
             */
            state.ds.lookahead -= state.ds.prev_length-1;
            state.ds.prev_length -= 2;
            do {
                if (++state.ds.strstart <= max_insert) {
                    INSERT_STRING(state.ds.strstart, hash_head);
                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
                     * always MIN_MATCH bytes ahead.
                     */
                }
            } while (--state.ds.prev_length != 0);
            state.ds.strstart++;
            match_available = 0;
            match_length = MIN_MATCH-1;

            if (flush) FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart;

        } else if (match_available) {
            /* If there was no match at the previous position, output a
             * single literal. If there was a match but the current match
             * is longer, truncate the previous match to a single literal.
             */
            if (ct_tally (state,0, state.ds.window[state.ds.strstart-1])) {
                FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart;
            }
            state.ds.strstart++;
            state.ds.lookahead--;
        } else {
            /* There is no previous match to compare with, wait for
             * the next step to decide.
             */
            match_available = 1;
            state.ds.strstart++;
            state.ds.lookahead--;
        }
//        Assert(state,strstart <= isize && lookahead <= isize, "a bit too far");

        /* Make sure that we always have enough lookahead, except
         * at the end of the input file. We need MAX_MATCH bytes
         * for the next match, plus MIN_MATCH bytes to insert the
         * string following the next match.
         */
        if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);
    }
    if (match_available) ct_tally (state,0, state.ds.window[state.ds.strstart-1]);

    return FLUSH_BLOCK(state,1); /* eof */
}












int putlocal(struct zlist far *z, WRITEFUNC wfunc,void *param)
{ // Write a local header described by *z to file *f.  Return a ZE_ error code.
  PUTLG(LOCSIG, f);
  PUTSH(z->ver, f);
  PUTSH(z->lflg, f);
  PUTSH(z->how, f);
  PUTLG(z->tim, f);
  PUTLG(z->crc, f);
  PUTLG(z->siz, f);
  PUTLG(z->len, f);
  PUTSH(z->nam, f);
  PUTSH(z->ext, f);
  size_t res = (size_t)wfunc(param, z->iname, (unsigned int)z->nam);
  if (res!=z->nam) return ZE_TEMP;
  if (z->ext)
  { res = (size_t)wfunc(param, z->extra, (unsigned int)z->ext);
    if (res!=z->ext) return ZE_TEMP;
  }
  return ZE_OK;
}

int putextended(struct zlist far *z, WRITEFUNC wfunc, void *param)
{ // Write an extended local header described by *z to file *f. Returns a ZE_ code
  PUTLG(EXTLOCSIG, f);
  PUTLG(z->crc, f);
  PUTLG(z->siz, f);
  PUTLG(z->len, f);
  return ZE_OK;
}

int putcentral(struct zlist far *z, WRITEFUNC wfunc, void *param)
{ // Write a central header entry of *z to file *f. Returns a ZE_ code.
  PUTLG(CENSIG, f);
  PUTSH(z->vem, f);
  PUTSH(z->ver, f);
  PUTSH(z->flg, f);
  PUTSH(z->how, f);
  PUTLG(z->tim, f);
  PUTLG(z->crc, f);
  PUTLG(z->siz, f);
  PUTLG(z->len, f);
  PUTSH(z->nam, f);
  PUTSH(z->cext, f);
  PUTSH(z->com, f);
  PUTSH(z->dsk, f);
  PUTSH(z->att, f);
  PUTLG(z->atx, f);
  PUTLG(z->off, f);
  if ((size_t)wfunc(param, z->iname, (unsigned int)z->nam) != z->nam ||
      (z->cext && (size_t)wfunc(param, z->cextra, (unsigned int)z->cext) != z->cext) ||
      (z->com && (size_t)wfunc(param, z->comment, (unsigned int)z->com) != z->com))
    return ZE_TEMP;
  return ZE_OK;
}


int putend(int n, ulg s, ulg c, extent m, char *z, WRITEFUNC wfunc, void *param)
{ // write the end of the central-directory-data to file *f.
  PUTLG(ENDSIG, f);
  PUTSH(0, f);
  PUTSH(0, f);
  PUTSH(n, f);
  PUTSH(n, f);
  PUTLG(s, f);
  PUTLG(c, f);
  PUTSH(m, f);
  // Write the comment, if any
  if (m && wfunc(param, z, (unsigned int)m) != m) return ZE_TEMP;
  return ZE_OK;
}






const ulg crc_table[256] = {
  0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
  0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
  0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
  0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
  0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
  0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
  0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
  0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
  0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
  0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
  0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
  0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
  0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
  0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
  0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
  0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
  0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
  0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
  0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
  0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
  0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
  0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
  0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
  0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
  0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
  0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
  0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
  0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
  0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
  0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
  0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
  0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
  0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
  0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
  0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
  0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
  0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
  0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
  0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
  0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
  0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
  0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
  0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
  0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
  0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
  0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
  0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
  0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
  0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
  0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
  0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
  0x2d02ef8dL
};

#define CRC32(c, b) (crc_table[((int)(c) ^ (b)) & 0xff] ^ ((c) >> 8))
#define DO1(buf)  crc = CRC32(crc, *buf++)
#define DO2(buf)  DO1(buf); DO1(buf)
#define DO4(buf)  DO2(buf); DO2(buf)
#define DO8(buf)  DO4(buf); DO4(buf)

ulg crc32(ulg crc, const uch *buf, extent len)
{ if (buf==NULL) return 0L;
  crc = crc ^ 0xffffffffL;
  while (len >= 8) {DO8(buf); len -= 8;}
  if (len) do {DO1(buf);} while (--len);
  return crc ^ 0xffffffffL;  // (instead of ~c for 64-bit machines)
}


void update_keys(unsigned long *keys, char c)
{ keys[0] = CRC32(keys[0],c);
  keys[1] += keys[0] & 0xFF;
  keys[1] = keys[1]*134775813L +1;
  keys[2] = CRC32(keys[2], keys[1] >> 24);
}
char decrypt_byte(unsigned long *keys)
{ unsigned temp = ((unsigned)keys[2] & 0xffff) | 2;
  return (char)(((temp * (temp ^ 1)) >> 8) & 0xff);
}
char zencode(unsigned long *keys, char c)
{ int t=decrypt_byte(keys);
  update_keys(keys,c);
  return (char)(t^c);
}







bool HasZipSuffix(const TCHAR *fn)
{ const TCHAR *ext = fn+_tcslen(fn);
  while (ext>fn && *ext!='.') ext--;
  if (ext==fn && *ext!='.') return false;
  if (_tcsicmp(ext,_T(".Z"))==0) return true;
  if (_tcsicmp(ext,_T(".zip"))==0) return true;
  if (_tcsicmp(ext,_T(".zoo"))==0) return true;
  if (_tcsicmp(ext,_T(".arc"))==0) return true;
  if (_tcsicmp(ext,_T(".lzh"))==0) return true;
  if (_tcsicmp(ext,_T(".arj"))==0) return true;
  if (_tcsicmp(ext,_T(".gz"))==0) return true;
  if (_tcsicmp(ext,_T(".tgz"))==0) return true;
  return false;
}


lutime_t filetime2timet(const FILETIME ft)
{ __int64 i = *(__int64*)&ft;
  return (lutime_t)((i-116444736000000000)/10000000);
}

void filetime2dosdatetime(const FILETIME ft, WORD *dosdate,WORD *dostime)
{ // date: bits 0-4 are day of month 1-31. Bits 5-8 are month 1..12. Bits 9-15 are year-1980
  // time: bits 0-4 are seconds/2, bits 5-10 are minute 0..59. Bits 11-15 are hour 0..23
  SYSTEMTIME st; FileTimeToSystemTime(&ft,&st); 
  *dosdate = (WORD)(((st.wYear-1980)&0x7f) << 9);
  *dosdate |= (WORD)((st.wMonth&0xf) << 5);
  *dosdate |= (WORD)((st.wDay&0x1f));
  *dostime = (WORD)((st.wHour&0x1f) << 11);
  *dostime |= (WORD)((st.wMinute&0x3f) << 5);
  *dostime |= (WORD)((st.wSecond*2)&0x1f);
}


ZRESULT GetFileInfo(HANDLE hf, ulg *attr, long *size, iztimes *times, ulg *timestamp)
{ // The handle must be a handle to a file
  // The date and time is returned in a long with the date most significant to allow
  // unsigned integer comparison of absolute times. The attributes have two
  // high bytes unix attr, and two low bytes a mapping of that to DOS attr.
  //struct stat s; int res=stat(fn,&s); if (res!=0) return false;
  // translate windows file attributes into zip ones.
  BY_HANDLE_FILE_INFORMATION bhi; BOOL res=GetFileInformationByHandle(hf,&bhi);
  if (!res) return ZR_NOFILE;
  DWORD fa=bhi.dwFileAttributes; ulg a=0;
  // Zip uses the lower word for its interpretation of windows stuff
  if (fa&FILE_ATTRIBUTE_READONLY) a|=0x01;
  if (fa&FILE_ATTRIBUTE_HIDDEN)   a|=0x02;
  if (fa&FILE_ATTRIBUTE_SYSTEM)   a|=0x04;
  if (fa&FILE_ATTRIBUTE_DIRECTORY)a|=0x10;
  if (fa&FILE_ATTRIBUTE_ARCHIVE)  a|=0x20;
  // It uses the upper word for standard unix attr, which we manually construct
  if (fa&FILE_ATTRIBUTE_DIRECTORY)a|=0x40000000;  // directory
  else a|=0x80000000;  // normal file
  a|=0x01000000;      // readable
  if (fa&FILE_ATTRIBUTE_READONLY) {} else a|=0x00800000; // writeable
  // now just a small heuristic to check if it's an executable:
  DWORD red, hsize=GetFileSize(hf,NULL); if (hsize>40)
  { SetFilePointer(hf,0,NULL,FILE_BEGIN); unsigned short magic; ReadFile(hf,&magic,sizeof(magic),&red,NULL);
    SetFilePointer(hf,36,NULL,FILE_BEGIN); unsigned long hpos;  ReadFile(hf,&hpos,sizeof(hpos),&red,NULL);
    if (magic==0x54AD && hsize>hpos+4+20+28)
    { SetFilePointer(hf,hpos,NULL,FILE_BEGIN); unsigned long signature; ReadFile(hf,&signature,sizeof(signature),&red,NULL);
      if (signature==IMAGE_DOS_SIGNATURE || signature==IMAGE_OS2_SIGNATURE
         || signature==IMAGE_OS2_SIGNATURE_LE || signature==IMAGE_NT_SIGNATURE)
      { a |= 0x00400000; // executable
      }
    }
  }
  //
  if (attr!=NULL) *attr = a;
  if (size!=NULL) *size = hsize;
  if (times!=NULL)
  { // lutime_t is 32bit number of seconds elapsed since 0:0:0GMT, Jan1, 1970.
    // but FILETIME is 64bit number of 100-nanosecs since Jan1, 1601
    times->atime = filetime2timet(bhi.ftLastAccessTime);
    times->mtime = filetime2timet(bhi.ftLastWriteTime);
    times->ctime = filetime2timet(bhi.ftCreationTime);
  }
  if (timestamp!=NULL)
  { WORD dosdate,dostime;
    filetime2dosdatetime(bhi.ftLastWriteTime,&dosdate,&dostime);
    *timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);
  }
  return ZR_OK;
}








class TZip
{ public:
  TZip(const char *pwd) : hfout(0),mustclosehfout(false),hmapout(0),zfis(0),obuf(0),hfin(0),writ(0),oerr(false),hasputcen(false),ooffset(0),encwriting(false),encbuf(0),password(0), state(0) {if (pwd!=0 && *pwd!=0) {password=new char[strlen(pwd)+1]; strcpy(password,pwd);}}
  ~TZip() {if (state!=0) delete state; state=0; if (encbuf!=0) delete[] encbuf; encbuf=0; if (password!=0) delete[] password; password=0;}

  // These variables say about the file we're writing into
  // We can write to pipe, file-by-handle, file-by-name, memory-to-memmapfile
  char *password;           // keep a copy of the password
  HANDLE hfout;             // if valid, we'll write here (for files or pipes)
  bool mustclosehfout;      // if true, we are responsible for closing hfout
  HANDLE hmapout;           // otherwise, we'll write here (for memmap)
  unsigned ooffset;         // for hfout, this is where the pointer was initially
  ZRESULT oerr;             // did a write operation give rise to an error?
  unsigned writ;            // how far have we written. This is maintained by Add, not write(), to avoid confusion over seeks
  bool ocanseek;            // can we seek?
  char *obuf;               // this is where we've locked mmap to view.
  unsigned int opos;        // current pos in the mmap
  unsigned int mapsize;     // the size of the map we created
  bool hasputcen;           // have we yet placed the central directory?
  bool encwriting;          // if true, then we'll encrypt stuff using 'keys' before we write it to disk
  unsigned long keys[3];    // keys are initialised inside Add()
  char *encbuf;             // if encrypting, then this is a temporary workspace for encrypting the data
  unsigned int encbufsize;  // (to be used and resized inside write(), and deleted in the destructor)
  //
  TZipFileInfo *zfis;       // each file gets added onto this list, for writing the table at the end
  TState *state;            // we use just one state object per zip, because it's big (500k)

  ZRESULT Create(void *z,unsigned int len,DWORD flags);
  static unsigned sflush(void *param,const char *buf, unsigned *size);
  static unsigned swrite(void *param,const char *buf, unsigned size);
  unsigned int write(const char *buf,unsigned int size);
  bool oseek(unsigned int pos);
  ZRESULT GetMemory(void **pbuf, unsigned long *plen);
  ZRESULT Close();

  // some variables to do with the file currently being read:
  // I haven't done it object-orientedly here, just put them all
  // together, since OO didn't seem to make the design any clearer.
  ulg attr; iztimes times; ulg timestamp;  // all open_* methods set these
  bool iseekable; long isize,ired;         // size is not set until close() on pips
  ulg crc;                                 // crc is not set until close(). iwrit is cumulative
  HANDLE hfin; bool selfclosehf;           // for input files and pipes
  const char *bufin; unsigned int lenin,posin; // for memory
  // and a variable for what we've done with the input: (i.e. compressed it!)
  ulg csize;                               // compressed size, set by the compression routines
  // and this is used by some of the compression routines
  char buf[16384];


  ZRESULT open_file(const TCHAR *fn);
  ZRESULT open_handle(HANDLE hf,unsigned int len);
  ZRESULT open_mem(void *src,unsigned int len);
  ZRESULT open_dir();
  static unsigned sread(TState &s,char *buf,unsigned size);
  unsigned read(char *buf, unsigned size);
  ZRESULT iclose();

  ZRESULT ideflate(TZipFileInfo *zfi);
  ZRESULT istore();

  ZRESULT Add(const TCHAR *odstzn, void *src,unsigned int len, DWORD flags);
  ZRESULT AddCentral();

};



ZRESULT TZip::Create(void *z,unsigned int len,DWORD flags)
{ if (hfout!=0 || hmapout!=0 || obuf!=0 || writ!=0 || oerr!=ZR_OK || hasputcen) return ZR_NOTINITED;
  //
  if (flags==ZIP_HANDLE)
  { HANDLE hf = (HANDLE)z;
    hfout=hf; mustclosehfout=false;
#ifdef DuplicateHandle
    BOOL res = DuplicateHandle(GetCurrentProcess(),hf,GetCurrentProcess(),&hfout,0,FALSE,DUPLICATE_SAME_ACCESS);
    if (res) mustclosehandle=true;
#endif
    // now we have hfout. Either we duplicated the handle and we close it ourselves
    // (while the caller closes h themselves), or we couldn't duplicate it.
    DWORD res = SetFilePointer(hfout,0,0,FILE_CURRENT);
    ocanseek = (res!=0xFFFFFFFF);
    if (ocanseek) ooffset=res; else ooffset=0;
    return ZR_OK;
  }
  else if (flags==ZIP_FILENAME)
  { const TCHAR *fn = (const TCHAR*)z;
    hfout = CreateFile(fn,GENERIC_WRITE,0,NULL,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
    if (hfout==INVALID_HANDLE_VALUE) {hfout=0; return ZR_NOFILE;}
    ocanseek=true;
    ooffset=0;
    mustclosehfout=true;
    return ZR_OK;
  }
  else if (flags==ZIP_MEMORY)
  { unsigned int size = len;
    if (size==0) return ZR_MEMSIZE;
    if (z!=0) obuf=(char*)z;
    else
    { hmapout = CreateFileMapping(INVALID_HANDLE_VALUE,NULL,PAGE_READWRITE,0,size,NULL);
      if (hmapout==NULL) return ZR_NOALLOC;
      obuf = (char*)MapViewOfFile(hmapout,FILE_MAP_ALL_ACCESS,0,0,size);
      if (obuf==0) {CloseHandle(hmapout); hmapout=0; return ZR_NOALLOC;}
    }
    ocanseek=true;
    opos=0; mapsize=size;
    return ZR_OK;
  }
  else return ZR_ARGS;
}

unsigned TZip::sflush(void *param,const char *buf, unsigned *size)
{ // static
  if (*size==0) return 0;
  TZip *zip = (TZip*)param;
  unsigned int writ = zip->write(buf,*size);
  if (writ!=0) *size=0;
  return writ;
}
unsigned TZip::swrite(void *param,const char *buf, unsigned size)
{ // static
  if (size==0) return 0;
  TZip *zip=(TZip*)param; return zip->write(buf,size);
}
unsigned int TZip::write(const char *buf,unsigned int size)
{ const char *srcbuf=buf;
  if (encwriting)
  { if (encbuf!=0 && encbufsize<size) {delete[] encbuf; encbuf=0;}
    if (encbuf==0) {encbuf=new char[size*2]; encbufsize=size;}
    memcpy(encbuf,buf,size);
    for (unsigned int i=0; i<size; i++) encbuf[i]=zencode(keys,encbuf[i]);
    srcbuf=encbuf;
  }
  if (obuf!=0)
  { if (opos+size>=mapsize) {oerr=ZR_MEMSIZE; return 0;}
    memcpy(obuf+opos, srcbuf, size);
    opos+=size;
    return size;
  }
  else if (hfout!=0)
  { DWORD writ; WriteFile(hfout,srcbuf,size,&writ,NULL);
    return writ;
  }
  oerr=ZR_NOTINITED; return 0;
}

bool TZip::oseek(unsigned int pos)
{ if (!ocanseek) {oerr=ZR_SEEK; return false;}
  if (obuf!=0)
  { if (pos>=mapsize) {oerr=ZR_MEMSIZE; return false;}
    opos=pos;
    return true;
  }
  else if (hfout!=0)
  { SetFilePointer(hfout,pos+ooffset,NULL,FILE_BEGIN);
    return true;
  }
  oerr=ZR_NOTINITED; return 0;
}

ZRESULT TZip::GetMemory(void **pbuf, unsigned long *plen)
{ // When the user calls GetMemory, they're presumably at the end
  // of all their adding. In any case, we have to add the central
  // directory now, otherwise the memory we tell them won't be complete.
  if (!hasputcen) AddCentral(); hasputcen=true;
  if (pbuf!=NULL) *pbuf=(void*)obuf;
  if (plen!=NULL) *plen=writ;
  if (obuf==NULL) return ZR_NOTMMAP;
  return ZR_OK;
}

ZRESULT TZip::Close()
{ // if the directory hadn't already been added through a call to GetMemory,
  // then we do it now
  ZRESULT res=ZR_OK; if (!hasputcen) res=AddCentral(); hasputcen=true;
  if (obuf!=0 && hmapout!=0) UnmapViewOfFile(obuf); obuf=0;
  if (hmapout!=0) CloseHandle(hmapout); hmapout=0;
  if (hfout!=0 && mustclosehfout) CloseHandle(hfout); hfout=0; mustclosehfout=false;
  return res;
}




ZRESULT TZip::open_file(const TCHAR *fn)
{ hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0;
  if (fn==0) return ZR_ARGS;
  HANDLE hf = CreateFile(fn,GENERIC_READ,FILE_SHARE_READ,NULL,OPEN_EXISTING,0,NULL);
  if (hf==INVALID_HANDLE_VALUE) return ZR_NOFILE;
  ZRESULT res = open_handle(hf,0);
  if (res!=ZR_OK) {CloseHandle(hf); return res;}
  selfclosehf=true;
  return ZR_OK;
}
ZRESULT TZip::open_handle(HANDLE hf,unsigned int len)
{ hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0;
  if (hf==0 || hf==INVALID_HANDLE_VALUE) return ZR_ARGS;
  DWORD res = SetFilePointer(hfout,0,0,FILE_CURRENT);
  if (res!=0xFFFFFFFF)
  { ZRESULT res = GetFileInfo(hf,&attr,&isize,&times,&timestamp);
    if (res!=ZR_OK) return res;
    SetFilePointer(hf,0,NULL,FILE_BEGIN); // because GetFileInfo will have screwed it up
    iseekable=true; hfin=hf;
    return ZR_OK;
  }
  else
  { attr= 0x80000000;      // just a normal file
    isize = -1;            // can't know size until at the end
    if (len!=0) isize=len; // unless we were told explicitly!
    iseekable=false;
    SYSTEMTIME st; GetLocalTime(&st);
    FILETIME ft;   SystemTimeToFileTime(&st,&ft);
    WORD dosdate,dostime; filetime2dosdatetime(ft,&dosdate,&dostime);
    times.atime = filetime2timet(ft);
    times.mtime = times.atime;
    times.ctime = times.atime;
    timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);
    hfin=hf;
    return ZR_OK;
  }
}
ZRESULT TZip::open_mem(void *src,unsigned int len)
{ hfin=0; bufin=(const char*)src; selfclosehf=false; crc=CRCVAL_INITIAL; ired=0; csize=0; ired=0;
  lenin=len; posin=0;
  if (src==0 || len==0) return ZR_ARGS;
  attr= 0x80000000; // just a normal file
  isize = len;
  iseekable=true;
  SYSTEMTIME st; GetLocalTime(&st);
  FILETIME ft;   SystemTimeToFileTime(&st,&ft);
  WORD dosdate,dostime; filetime2dosdatetime(ft,&dosdate,&dostime);
  times.atime = filetime2timet(ft);
  times.mtime = times.atime;
  times.ctime = times.atime;
  timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);
  return ZR_OK;
}
ZRESULT TZip::open_dir()
{ hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0;
  attr= 0x41C00010; // a readable writable directory, and again directory
  isize = 0;
  iseekable=false;
  SYSTEMTIME st; GetLocalTime(&st);
  FILETIME ft;   SystemTimeToFileTime(&st,&ft);
  WORD dosdate,dostime; filetime2dosdatetime(ft,&dosdate,&dostime);
  times.atime = filetime2timet(ft);
  times.mtime = times.atime;
  times.ctime = times.atime;
  timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);
  return ZR_OK;
}

unsigned TZip::sread(TState &s,char *buf,unsigned size)
{ // static
  TZip *zip = (TZip*)s.param;
  return zip->read(buf,size);
}

unsigned TZip::read(char *buf, unsigned size)
{ if (bufin!=0)
  { if (posin>=lenin) return 0; // end of input
    ulg red = lenin-posin;
    if (red>size) red=size;
    memcpy(buf, bufin+posin, red);
    posin += red;
    ired += red;
    crc = crc32(crc, (uch*)buf, red);
    return red;
  }
  else if (hfin!=0)
  { DWORD red;
    BOOL ok = ReadFile(hfin,buf,size,&red,NULL);
    if (!ok) return 0;
    ired += red;
    crc = crc32(crc, (uch*)buf, red);
    return red;
  }
  else {oerr=ZR_NOTINITED; return 0;}
}

ZRESULT TZip::iclose()
{ if (selfclosehf && hfin!=0) CloseHandle(hfin); hfin=0;
  bool mismatch = (isize!=-1 && isize!=ired);
  isize=ired; // and crc has been being updated anyway
  if (mismatch) return ZR_MISSIZE;
  else return ZR_OK;
}



ZRESULT TZip::ideflate(TZipFileInfo *zfi)
{ if (state==0) state=new TState();
  // It's a very big object! 500k! We allocate it on the heap, because PocketPC's
  // stack breaks if we try to put it all on the stack. It will be deleted lazily
  state->err=0;
  state->readfunc=sread; state->flush_outbuf=sflush;
  state->param=this; state->level=8; state->seekable=iseekable; state->err=NULL;
  // the following line will make ct_init realise it has to perform the init
  state->ts.static_dtree[0].dl.len = 0;
  // Thanks to Alvin77 for this crucial fix:
  state->ds.window_size=0;
  //  I think that covers everything that needs to be initted.
  //
  bi_init(*state,buf, sizeof(buf), TRUE); // it used to be just 1024-size, not 16384 as here
  ct_init(*state,&zfi->att);
  lm_init(*state,state->level, &zfi->flg);
  ulg sz = deflate(*state);
  csize=sz;
  ZRESULT r=ZR_OK; if (state->err!=NULL) r=ZR_FLATE;
  return r;
}

ZRESULT TZip::istore()
{ ulg size=0;
  for (;;)
  { unsigned int cin=read(buf,16384); if (cin<=0 || cin==(unsigned int)EOF) break;
    unsigned int cout = write(buf,cin); if (cout!=cin) return ZR_MISSIZE;
    size += cin;
  }
  csize=size;
  return ZR_OK;
}





bool has_seeded=false;
ZRESULT TZip::Add(const TCHAR *odstzn, void *src,unsigned int len, DWORD flags)
{ if (oerr) return ZR_FAILED;
  if (hasputcen) return ZR_ENDED;

  // if we use password encryption, then every isize and csize is 12 bytes bigger
  int passex=0; if (password!=0 && flags!=ZIP_FOLDER) passex=12;

  // zip has its own notion of what its names should look like: i.e. dir/file.stuff
  TCHAR dstzn[MAX_PATH]; _tcscpy(dstzn,odstzn);
  if (*dstzn==0) return ZR_ARGS;
  TCHAR *d=dstzn; while (*d!=0) {if (*d=='\\') *d='/'; d++;}
  bool isdir = (flags==ZIP_FOLDER);
  bool needs_trailing_slash = (isdir && dstzn[_tcslen(dstzn)-1]!='/');
  int method=DEFLATE; if (isdir || HasZipSuffix(dstzn)) method=STORE;

  // now open whatever was our input source:
  ZRESULT openres;
  if (flags==ZIP_FILENAME) openres=open_file((const TCHAR*)src);
  else if (flags==ZIP_HANDLE) openres=open_handle((HANDLE)src,len);
  else if (flags==ZIP_MEMORY) openres=open_mem(src,len);
  else if (flags==ZIP_FOLDER) openres=open_dir();
  else return ZR_ARGS;
  if (openres!=ZR_OK) return openres;

  // A zip "entry" consists of a local header (which includes the file name),
  // then the compressed data, and possibly an extended local header.

  // Initialize the local header
  TZipFileInfo zfi; zfi.nxt=NULL;
  strcpy(zfi.name,"");
#ifdef UNICODE
  WideCharToMultiByte(CP_UTF8,0,dstzn,-1,zfi.iname,MAX_PATH,0,0);
#else
  strcpy(zfi.iname,dstzn);
#endif
  zfi.nam=strlen(zfi.iname);
  if (needs_trailing_slash) {strcat(zfi.iname,"/"); zfi.nam++;}
  strcpy(zfi.zname,"");
  zfi.extra=NULL; zfi.ext=0;   // extra header to go after this compressed data, and its length
  zfi.cextra=NULL; zfi.cext=0; // extra header to go in the central end-of-zip directory, and its length
  zfi.comment=NULL; zfi.com=0; // comment, and its length
  zfi.mark = 1;
  zfi.dosflag = 0;
  zfi.att = (ush)BINARY;
  zfi.vem = (ush)0xB17; // 0xB00 is win32 os-code. 0x17 is 23 in decimal: zip 2.3
  zfi.ver = (ush)20;    // Needs PKUNZIP 2.0 to unzip it
  zfi.tim = timestamp;
  // Even though we write the header now, it will have to be rewritten, since we don't know compressed size or crc.
  zfi.crc = 0;            // to be updated later
  zfi.flg = 8;            // 8 means 'there is an extra header'. Assume for the moment that we need it.
  if (password!=0 && !isdir) zfi.flg=9;  // and 1 means 'password-encrypted'
  zfi.lflg = zfi.flg;     // to be updated later
  zfi.how = (ush)method;  // to be updated later
  zfi.siz = (ulg)(method==STORE && isize>=0 ? isize+passex : 0); // to be updated later
  zfi.len = (ulg)(isize);  // to be updated later
  zfi.dsk = 0;
  zfi.atx = attr;
  zfi.off = writ+ooffset;         // offset within file of the start of this local record
  // stuff the 'times' structure into zfi.extra

  // nb. apparently there's a problem with PocketPC CE(zip)->CE(unzip) fails. And removing the following block fixes it up.
  char xloc[EB_L_UT_SIZE]; zfi.extra=xloc;  zfi.ext=EB_L_UT_SIZE;
  char xcen[EB_C_UT_SIZE]; zfi.cextra=xcen; zfi.cext=EB_C_UT_SIZE;
  xloc[0]  = 'U';
  xloc[1]  = 'T';
  xloc[2]  = EB_UT_LEN(3);       // length of data part of e.f.
  xloc[3]  = 0;
  xloc[4]  = EB_UT_FL_MTIME | EB_UT_FL_ATIME | EB_UT_FL_CTIME;
  xloc[5]  = (char)(times.mtime);
  xloc[6]  = (char)(times.mtime >> 8);
  xloc[7]  = (char)(times.mtime >> 16);
  xloc[8]  = (char)(times.mtime >> 24);
  xloc[9]  = (char)(times.atime);
  xloc[10] = (char)(times.atime >> 8);
  xloc[11] = (char)(times.atime >> 16);
  xloc[12] = (char)(times.atime >> 24);
  xloc[13] = (char)(times.ctime);
  xloc[14] = (char)(times.ctime >> 8);
  xloc[15] = (char)(times.ctime >> 16);
  xloc[16] = (char)(times.ctime >> 24);
  memcpy(zfi.cextra,zfi.extra,EB_C_UT_SIZE);
  zfi.cextra[EB_LEN] = EB_UT_LEN(1);


  // (1) Start by writing the local header:
  int r = putlocal(&zfi,swrite,this);
  if (r!=ZE_OK) {iclose(); return ZR_WRITE;}
  writ += 4 + LOCHEAD + (unsigned int)zfi.nam + (unsigned int)zfi.ext;
  if (oerr!=ZR_OK) {iclose(); return oerr;}

  // (1.5) if necessary, write the encryption header
  keys[0]=305419896L;
  keys[1]=591751049L;
  keys[2]=878082192L;
  for (const char *cp=password; cp!=0 && *cp!=0; cp++) update_keys(keys,*cp);
  // generate some random bytes
  if (!has_seeded) srand(GetTickCount()^(unsigned long)GetDesktopWindow());
  char encbuf[12]; for (int i=0; i<12; i++) encbuf[i]=(char)((rand()>>7)&0xff);
  encbuf[11] = (char)((zfi.tim>>8)&0xff);
  for (int ei=0; ei<12; ei++) encbuf[ei]=zencode(keys,encbuf[ei]);
  if (password!=0 && !isdir) {swrite(this,encbuf,12); writ+=12;}

  //(2) Write deflated/stored file to zip file
  ZRESULT writeres=ZR_OK;
  encwriting = (password!=0 && !isdir);  // an object member variable to say whether we write to disk encrypted
  if (!isdir && method==DEFLATE) writeres=ideflate(&zfi);
  else if (!isdir && method==STORE) writeres=istore();
  else if (isdir) csize=0;
  encwriting = false;
  iclose();
  writ += csize;
  if (oerr!=ZR_OK) return oerr;
  if (writeres!=ZR_OK) return ZR_WRITE;

  // (3) Either rewrite the local header with correct information...
  bool first_header_has_size_right = (zfi.siz==csize+passex);
  zfi.crc = crc;
  zfi.siz = csize+passex;
  zfi.len = isize;
  if (ocanseek && (password==0 || isdir))
  { zfi.how = (ush)method;
    if ((zfi.flg & 1) == 0) zfi.flg &= ~8; // clear the extended local header flag
    zfi.lflg = zfi.flg;
    // rewrite the local header:
    if (!oseek(zfi.off-ooffset)) return ZR_SEEK;
    if ((r = putlocal(&zfi, swrite,this)) != ZE_OK) return ZR_WRITE;
    if (!oseek(writ)) return ZR_SEEK;
  }
  else
  { // (4) ... or put an updated header at the end
    if (zfi.how != (ush) method) return ZR_NOCHANGE;
    if (method==STORE && !first_header_has_size_right) return ZR_NOCHANGE;
    if ((r = putextended(&zfi, swrite,this)) != ZE_OK) return ZR_WRITE;
    writ += 16L;
    zfi.flg = zfi.lflg; // if flg modified by inflate, for the central index
  }
  if (oerr!=ZR_OK) return oerr;

  // Keep a copy of the zipfileinfo, for our end-of-zip directory
  char *cextra = new char[zfi.cext]; memcpy(cextra,zfi.cextra,zfi.cext); zfi.cextra=cextra;
  TZipFileInfo *pzfi = new TZipFileInfo; memcpy(pzfi,&zfi,sizeof(zfi));
  if (zfis==NULL) zfis=pzfi;
  else {TZipFileInfo *z=zfis; while (z->nxt!=NULL) z=z->nxt; z->nxt=pzfi;}
  return ZR_OK;
}

ZRESULT TZip::AddCentral()
{ // write central directory
  int numentries = 0;
  ulg pos_at_start_of_central = writ;
  //ulg tot_unc_size=0, tot_compressed_size=0;
  bool okay=true;
  for (TZipFileInfo *zfi=zfis; zfi!=NULL; )
  { if (okay)
    { int res = putcentral(zfi, swrite,this);
      if (res!=ZE_OK) okay=false;
    }
    writ += 4 + CENHEAD + (unsigned int)zfi->nam + (unsigned int)zfi->cext + (unsigned int)zfi->com;
    //tot_unc_size += zfi->len;
    //tot_compressed_size += zfi->siz;
    numentries++;
    //
    TZipFileInfo *zfinext = zfi->nxt;
    if (zfi->cextra!=0) delete[] zfi->cextra;
    delete zfi;
    zfi = zfinext;
  }
  ulg center_size = writ - pos_at_start_of_central;
  if (okay)
  { int res = putend(numentries, center_size, pos_at_start_of_central+ooffset, 0, NULL, swrite,this);
    if (res!=ZE_OK) okay=false;
    writ += 4 + ENDHEAD + 0;
  }
  if (!okay) return ZR_WRITE;
  return ZR_OK;
}





ZRESULT lasterrorZ=ZR_OK;

unsigned int FormatZipMessageZ(ZRESULT code, char *buf,unsigned int len)
{ if (code==ZR_RECENT) code=lasterrorZ;
  const char *msg="unknown zip result code";
  switch (code)
  { case ZR_OK: msg="Success"; break;
    case ZR_NODUPH: msg="Culdn't duplicate handle"; break;
    case ZR_NOFILE: msg="Couldn't create/open file"; break;
    case ZR_NOALLOC: msg="Failed to allocate memory"; break;
    case ZR_WRITE: msg="Error writing to file"; break;
    case ZR_NOTFOUND: msg="File not found in the zipfile"; break;
    case ZR_MORE: msg="Still more data to unzip"; break;
    case ZR_CORRUPT: msg="Zipfile is corrupt or not a zipfile"; break;
    case ZR_READ: msg="Error reading file"; break;
    case ZR_ARGS: msg="Caller: faulty arguments"; break;
    case ZR_PARTIALUNZ: msg="Caller: the file had already been partially unzipped"; break;
    case ZR_NOTMMAP: msg="Caller: can only get memory of a memory zipfile"; break;
    case ZR_MEMSIZE: msg="Caller: not enough space allocated for memory zipfile"; break;
    case ZR_FAILED: msg="Caller: there was a previous error"; break;
    case ZR_ENDED: msg="Caller: additions to the zip have already been ended"; break;
    case ZR_ZMODE: msg="Caller: mixing creation and opening of zip"; break;
    case ZR_NOTINITED: msg="Zip-bug: internal initialisation not completed"; break;
    case ZR_SEEK: msg="Zip-bug: trying to seek the unseekable"; break;
    case ZR_MISSIZE: msg="Zip-bug: the anticipated size turned out wrong"; break;
    case ZR_NOCHANGE: msg="Zip-bug: tried to change mind, but not allowed"; break;
    case ZR_FLATE: msg="Zip-bug: an internal error during flation"; break;
  }
  unsigned int mlen=(unsigned int)strlen(msg);
  if (buf==0 || len==0) return mlen;
  unsigned int n=mlen; if (n+1>len) n=len-1;
  strncpy(buf,msg,n); buf[n]=0;
  return mlen;
}



typedef struct
{ DWORD flag;
  TZip *zip;
} TZipHandleData;


HZIP CreateZipInternal(void *z,unsigned int len,DWORD flags, const char *password)
{ TZip *zip = new TZip(password);
  lasterrorZ = zip->Create(z,len,flags);
  if (lasterrorZ!=ZR_OK) {delete zip; return 0;}
  TZipHandleData *han = new TZipHandleData;
  han->flag=2; han->zip=zip; return (HZIP)han;
}
HZIP CreateZipHandle(HANDLE h, const char *password) {return CreateZipInternal(h,0,ZIP_HANDLE,password);}
HZIP CreateZip(const TCHAR *fn, const char *password) {return CreateZipInternal((void*)fn,0,ZIP_FILENAME,password);}
HZIP CreateZip(void *z,unsigned int len, const char *password) {return CreateZipInternal(z,len,ZIP_MEMORY,password);}


ZRESULT ZipAddInternal(HZIP hz,const TCHAR *dstzn, void *src,unsigned int len, DWORD flags)
{ if (hz==0) {lasterrorZ=ZR_ARGS;return ZR_ARGS;}
  TZipHandleData *han = (TZipHandleData*)hz;
  if (han->flag!=2) {lasterrorZ=ZR_ZMODE;return ZR_ZMODE;}
  TZip *zip = han->zip;
  lasterrorZ = zip->Add(dstzn,src,len,flags);
  return lasterrorZ;
}
ZRESULT ZipAdd(HZIP hz,const TCHAR *dstzn, const TCHAR *fn) {return ZipAddInternal(hz,dstzn,(void*)fn,0,ZIP_FILENAME);}
ZRESULT ZipAdd(HZIP hz,const TCHAR *dstzn, void *src,unsigned int len) {return ZipAddInternal(hz,dstzn,src,len,ZIP_MEMORY);}
ZRESULT ZipAddHandle(HZIP hz,const TCHAR *dstzn, HANDLE h) {return ZipAddInternal(hz,dstzn,h,0,ZIP_HANDLE);}
ZRESULT ZipAddHandle(HZIP hz,const TCHAR *dstzn, HANDLE h, unsigned int len) {return ZipAddInternal(hz,dstzn,h,len,ZIP_HANDLE);}
ZRESULT ZipAddFolder(HZIP hz,const TCHAR *dstzn) {return ZipAddInternal(hz,dstzn,0,0,ZIP_FOLDER);}



ZRESULT ZipGetMemory(HZIP hz, void **buf, unsigned long *len)
{ if (hz==0) {if (buf!=0) *buf=0; if (len!=0) *len=0; lasterrorZ=ZR_ARGS;return ZR_ARGS;}
  TZipHandleData *han = (TZipHandleData*)hz;
  if (han->flag!=2) {lasterrorZ=ZR_ZMODE;return ZR_ZMODE;}
  TZip *zip = han->zip;
  lasterrorZ = zip->GetMemory(buf,len);
  return lasterrorZ;
}

ZRESULT CloseZipZ(HZIP hz)
{ if (hz==0) {lasterrorZ=ZR_ARGS;return ZR_ARGS;}
  TZipHandleData *han = (TZipHandleData*)hz;
  if (han->flag!=2) {lasterrorZ=ZR_ZMODE;return ZR_ZMODE;}
  TZip *zip = han->zip;
  lasterrorZ = zip->Close();
  delete zip;
  delete han;
  return lasterrorZ;
}

bool IsZipHandleZ(HZIP hz)
{ if (hz==0) return false;
  TZipHandleData *han = (TZipHandleData*)hz;
  return (han->flag==2);
}