ThreadPoolService.java
2.38 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
package com.diligrp.cashier.shared.service;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
/**
* 请谨慎使用此线程池工具类,通常建议根据特定的使用场景设置线程池参数,不建议使用统一的线程池配置
* JDK的线程池类并不能很好区分"计算密集型"和"IO密集型"任务类型,并根据不同的任务类型去配置不同的参数
*/
public final class ThreadPoolService {
private static final int CPU_CORE_NUM = Runtime.getRuntime().availableProcessors();
private static final int CPU_MAX_POOL_SIZE = 100;
private static final int IO_MAX_POOL_SIZE = 1000;
// CPU运算密集型任务的线程池实例
private static volatile ExecutorService cpuThreadPoll;
// IO密集型任务的线程池实例
private static volatile ExecutorService ioThreadPoll;
private ThreadPoolService() {
}
/**
* 获取运算密集型任务的线程池实例
* 通常建议根据特定的使用场景设置线程池参数,不建议使用统一的线程池配置
*/
public static ExecutorService getCpuThreadPoll() {
if (cpuThreadPoll == null) {
synchronized (ThreadPoolService.class) {
if (cpuThreadPoll == null) {
cpuThreadPoll = new ThreadPoolExecutor(CPU_CORE_NUM + 1, CPU_MAX_POOL_SIZE,
20, TimeUnit.SECONDS, new LinkedBlockingQueue<>(100),
new ThreadPoolExecutor.AbortPolicy());
}
}
}
return cpuThreadPoll;
}
/**
* 获取IO密集型任务的线程池实例
* 通常建议根据特定的使用场景设置线程池参数,不建议使用统一的线程池配置
*/
public static ExecutorService getIoThreadPoll() {
if (ioThreadPoll == null) {
synchronized (ThreadPoolService.class) {
if (ioThreadPoll == null) {
ioThreadPoll = new ThreadPoolExecutor(CPU_CORE_NUM + 1, IO_MAX_POOL_SIZE,
20, TimeUnit.SECONDS, new LinkedBlockingQueue<>(1000),
new ThreadPoolExecutor.AbortPolicy());
}
}
}
return ioThreadPoll;
}
}